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462 PRESKILL

1. INTRODUCTION

How is it possible to justify a lengthy review of the physics of the magnetic
monopole when nobody has ever seen one? fin spite of the unfortunate lack
of favorable experimental evidence, there are sound theoretical reasons for
believing that the magnetic monopole must exist. The case for its existence
is surely as strong as the case for any other undiscovered particle.
Moreover, as of this writing (early 1984), it is not certain that nobody has
ever seen one. What seems certain is that nobody has ever seen two.

The idea that magnetic monopoles, stable particles carrying magnetic
charges, ought to exist has iproved to be rernarkably durable. A persuasive
argument was first put forward by Dirac in 1931 (1). He noted that, 
monopoles exist, then electric charge must be quantized; ~hat is, all electric
charges must be integer multiples of a fundamental unit. Electric charge
quantization is actually observed in Nature, and no other explanation for
this deep phenomenon was known.

Many years later, another very good argument emerged. Polyakov (2)
and ’t Hooft (3) discovered that the existen.ce of monopoles follows from
quite general ideas.about the unification of the fundamental interactions. A
deeply held belief of many particle theorists is that the observed strong and
electroweak gauge interactions, which have three apparently independent
gauge coupling constants, actually become unified at extremely short
distances into a single gauge interaction with just. one gauge coupling
constant (4, 5). Polyakov and ’t Hooft showed that any such "grand unified"
theory of particle physics necessarily contains magnetic monopoles. The
implications of this discovery are rich and’ surprising and are still being
explored.

While Dirac had demonstrated the consistency of magnetic monopoles
with quantum electrodynamics, ’t Hooft attd Polyakov demonstrated the
necessity of monopoles in grand unified gauge theories. Furthermore, the
properties of the monopole are calculable, unambiguous predictions in a
given unified model.

All grand unified theories possess a large group of exact gauge
symmetries that mix the strong and electroweak interactions, but these
symmetries become spontaneously broken at an exceedingly short distance
scale M~~ (or, equivalently, an exceedingly large mass scale Mx). The
properties of the magnetic monopole, such as its size and mass, are
determined by the distance scale of the spontaneous symmetry breakdown
(the "unification scale"). The prediction that magnetic monopoles must
exist does not depend on the mechanism of the symmetry breakdown; for
example, it does not matter whether the Goldstone bosons associated with
the symmetry breakdown are elementary or composite. Nor does it matter
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MAGNETIC MONOPOLES 463

whether gravitation becomes unified with the other particle interactions at
the unification scale.

The magnetic charge g of the monopole is typically the "Dirac charge"

gD = 1/2e. (Magnetic charge will be defined so that the total magnetic flux
emanating from a charge ~ is 4n#. Electric charge is defined so that the
electric flux emanating from a charge e is e.) This magnetic charge is
distributed over a core with a radius of order M,~ 1, the unification distance
scale, and the mass of the monopole is comparable to the magnetostatic
potential energy of the core.

The unification mass scale Mx varies from one grand unified model to
another. But Mx can be calculated if we make a very strong assumption--
the "desert hypothesis"--that is, if we assume that no unexpected new inter-
actions or particles appear between present-day energies (of order 100 GeV)
and the unification scale Mx. [This assumption is also the basis of the
highly successful calculation (6) of the electroweak mixing angle sin2 0w.]
From the desert hypothesis follows the prediction Mx ~ 1014 GeV (6) ; the
properties of the monopole may then be summarized by

Charge : g = go = 1/2e,

Core size: R ~, M;~1 ~ 10 -28 cm, 1.

Mass: m ~ (4zc/e2)Mx 1016 GeV.

Here e2/4n is the running coupling constant renormalized at the mass scale
Mx, making it somewhat larger than ~ ~ 1/137.

Of course, the desert hypothesis could easily be wrong, even if the general
idea of grand unification is correct. So the size and mass of the monopole
could be much different from the estimates in Equation 1. It is nonetheless
interesting to note that one can reasonably expect the monopole to be an

extremely heavy stable elementary particle ; 1016 GeV ~ 10- 8 g m 106 J is
comparable to the mass of a bacterium, or the kinetic energy of a charging
rhinoceros. It is hardly surprising that magnetic monopoles have not been
produced by existing particle accelerators.

We also see from Equation 1 that the size R of the core of the monopole is
expected to be larger than its Compton wavelength by a factor of order
4n/e2. In this sense, the monopole is a nearly classical object; quantum
mechanics plays an insignificant role in determining the structure of its
core, if e2 is small. In fact, magnetic monopoles appear in spontaneously
broken unified gauge theories even in the classical limit, as stable time-
independent solutions to the classical field equations.

The stability of the classical monopole solution is ensured by a
topological principle to be explained in detail below. Loosely speaking, the
monopole is a "defect" in the scalar field that acts as an order parameter for
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464 PRESKILL

the spontaneous breakdown of the grand unified gauge symmetry. Trapped
inside its core is a region in which the scalar field respects symmetries
different from those respected by the vacuum state. This scalar field
configuration is energetically unfavorable, so the core cannot expand. But
the magnetostatic energy of the core prevents it from shrinking. So the core
is stable.

While most of the mass of the monopole is concentrated in its tiny core of
radius M~ 1, the monopole has iriteresting structure on many different size
scales (Figure 1). At distances less than M~ 1 ~ 10-16 cm from the center 
the monopole, virtual W and Z bosons have important effects on its
interactions with other particles. The monopole is also a hadron ; it has a
color magnetic field that extends out to distances of order 10-13 cm, and
then becomes screened by nonperturbative strong-interaction effects. And,
because of its large magnetic charge, the monopole is strongly coupled to a
surrounding cloud of virtual electron-positron pairs, which extends out to
distances of order m~- l ~ 10-11 cm. In a grand unified theory in which new
physics appears at energies below the unification scale Mx (so that the
desert hypothesis does not apply), the structure of the monopole might be
even more complicated.

The existence of magnetic monopoles is a very general consequence of the
unification of the fundamental interactions. But it is one thing to say that
monopoles must exist, and quite another to say that we have a reasonable
chance of observing one. If monopoles are as heavy as we expect, there is n6
hope of producing monopoles in any foreseen accelerator. Our best hope is
to observe a monopole in cosmic rays. But since no process occurring in the
present universe is sufficiently energetic to produce monopoles, any

10-16cm 10-~3cm 10-II cm

F~gure 1 Structure of a grand unified monopole.
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MAGNETIC MONOPOLES 465

monopoles around today must have been produced in the very early
universe, when higher energies were available. Thus, the abundance of
magnetic monopoles is a cosmological issue (7-9).

In fact, estimates based on the standard cosmological scenario indicate
that the monopole abundance should exceed by many orders of magnitude
the current observational limits. Thus, our failure to observe a monopole is
itselfa significant piece of information, casting doubt on either the standard
view of the evolution of the universe, or on cherished beliefs about particle
physics at extremely short distances. This dilemma has led to revolutionary
new developments in theoretical cosmology (10-12).

Significant as it may be not to see a monopole, it would be even more
interesting to see one. But astrophysical arguments indicate that the flux of
monopoles in cosmic rays is probably quite small (13, 14). Furthermore, 
monopoles are very heavy, those bombarding the earth are likely to be
moving rclativcly slowly, with velocities of order 10-3 c. Detection of these
slow, rare monopoles is a challenging problem for experimenters.

If a magnetic monopole is ever discovered, it will be a momentous
occasion, with many fascinating implications. For one thing, that there are
any monopoles at all would be evidence that the universe was once
extremely hot. And severe constraints would be placed on our attempts at
cosmological model building, for the observed monopole abundance would
have to be explained by any realistic cosmological scenario.

Detection of a monopole would also confirm a very fundamental
prediction of grand unification. The mass of the monopole, if it could be.
measured, would reveal the basic symmetry-breaking scale at which
electrodynamics becomes truly united with the other particle interactions.
More could be learned about very short-distance physics by studying the
interactions of monopoles with fermions. Remarkably, a charged fermion
(e.g. a quark or lepton) incident on a monopole at low energy can penetrate
to the core of the monopole, and probe its structure (15, 16). Thus
monopoles could provide us with a unique window on new physics at
incredibly short distances,

But even if nobody ever sees a magnetic monopole, there is surely much
to be gained by studying the theory of monopoles. Already, marvelous
insights into gauge theory and quantum field theory have been derived
from this study. There is little reason to doubt that further surprising
discoveries await the dedicated student of the magnetic monopole.

The main purpose of this article is to present the basic results of
monopole theory. For the most part, the presentation is intended to be
accessible to a reader with a minimal background in theoretical particle
physics. In Section 2, the connection between magnetic monopoles and the
quantization of electric charge is explained, and in Section 3 the classical
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466 PRESKILL

monopole solution of ’t Hooft and Polyakov is introduced. The theory of
magnetic monopoles carrying nonabelian magnetic charge is developed in
Section 4, and the general connection between the topology of a classical
monopole solution and its magnetic charge is established there. Various
examples illustrating and elucidating the formalism of Section 4 are
discussed in Section 5. Section 6 is concerned with the properties of dyons,
which carry both magnetic and electric charge. Aspects of the interactions
of fermions and monopoles are considered in Section 7. In Section 8, the
cosmological production of monopoles and astrophysical bounds on the
monopole abundance are described. Some remarks about the detection of
monopoles are contained in Section 9.

The reader who finds gaps in the present treatment may wish to consult
some of the other excellent reviews of these topics. For a general review of
grand unified theories~see (1.7, 18). For more about some of the topics 
Section 2-4, see (19-21); for Section 6, see (21); for Section 8, see (22-26);
and for Section 9, see (27, 28).

2. THE DIRAC MONOPOLE

2.1 Monopoles .and Charge Quantization

Measured electric charges are always found to be integer multiples of the
electron charge. This quantization of electric charge is a deep property of
Nature crying out for an explanation. More than fifty years ago, Dirac (1)
discovered that the existence of magnetic monopoles could "explain"
electric charge quantization.

Dirac envisaged a magnetic monopole as a semi-infinitely long, in-
finitesimally thin solenoid (Figure 2). The end of such a solenoid looks like 

Fioure 2 The end of a semi-infinite solenoid.
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MAGNETIC MONOPOLES 467

magnetic charge, but it makes sense to iden.tify this object as a magnetic
monopole only if no conceivable experiment can detect the infinitesimally
thin solenoid.

We can imagine trying to detect the solenoid by doing an electron
interference experiment (29); such an experiment gives a null result only 
the phase picked up by the electron wave function, when the electron is
transported along a closed path enclosing the solenoid, is trivial. Suppose a
point monopole with magnetic charge g sits at the origin, so that the
magnetic field is

©

B=g , 2.

and that the solenoid lies on the negative z-axis. Then, in spherical
coordinates, and in an appropriate gauge, the only nonvanishing com-
ponent of the vector potential is

A~ = g(1--cos ,9), 3.

where A, is defined by A" dr --- A, dO. The electron interference experi-
ment fails to detect the solenoid if

exp [-- ie{A" dr] = exp [- i4rceg] --- 1, 4.

where -- e is the electron charge. Hence, we require the magnetic charge 9 to
satisfy Dirac’s quantization condition (1)

n
e9=-. 5.

2

The minimum allowed magnetic charge gi~--1/2e is called the Dirac
magnetic charge.

Dirac’s reasoning shows that it is consistent in quantum mechanics to
describe a magnetic monopole with the vector potential Equation 3, even
though it has a "string" singularity for ~ = - ~. The string is undetectable.
In fact, we formulate in Section 4.1 a different mathematical description of
the monopole, in which the string is avoided altogether.

The quantization condition Equation 5 requires all magnetic charges
to be integer multiples of the Dirac charge 9D = 1/2e, We can also turn
this argument around, as follows: Suppose there exists a magnetic
monopole with magnetic charge 9D. Then it is consistent for a particle
with electric charge Qe (and vanishing magnetic charge) to exist only 
exp [i4r~QegD] = 1, or

Q = (1/2egD)n = 6.
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468 PRESKILL

where n is an integer. Therefore, the existence of a magnetic monopole
implies quantization of electric charge.

2.2 Generalizations of the Quantization Condition

To derive the Dirac quantization condition (Equation 5), we used the
electron charge - e. But we believe that quarks exist, and the electric charge
of a down quark, for example, is -e/3. Will not the same argument as
before, applied to a down quark instead of an electron, lead tO the
conclusion that the minimal allowed magnetic charge is 3eD instead of 9D?

No, not if quarks are confined (30). For if quarks are permanently
confined in hadrons, it makes sense to speak of performing a quark
interference experiment only over distances less than 10- t 3 cm, the size of a
hadron. It is true that, when the down quark is transported around Dirac’s
string, its wave function acquires the nontrivial phase

exp [-- i(e/3)~Ae=" dr] = exp (-- i2~/3) ~ 7.

due to the coupling of the down quark to the electromagnetic vector
potential, if the monopole carries the Dirac magnetic charge go. But we
must recall that the down quark carries another degree of freedom, color.
The string is not detectable :if the monopole also has a color-magneticfield,
such that the phase acquired by the down quark wave function due to the
color vector potential compensates for the phase due to the electromagnetic
vector potential, or

exp [ie~A~o~or" dr] = exp (i2~/3), 8.

where e¢ is the color gauge coupling.
The correct conclusion, then, if quarks are confined, is not that the

minimal magnetic charge is eta, but rather that the monopole carrying
magnetic charge 9~ must also carry a color-magnetic charge. The color-
magnetic field of the monopole becomes screened by nonperturbative
strong-interaction effects at distances greater than 10-~3 cm (21, 31). 
also conclude that there cannot exist both isolated fractional electric
charges and monopoles with the Dirac magnetic charge, unless there is
some other (as yet unknown) long-range field that couples to both the
monopoles and the fractional electric charges (32).

To state the Dirac quantization condition in its most general form, we
note that the vector potential of a magnetic monopole carrying more than
one type of magnetic charge can in general be written (33)

~ e~T~A~ = .½M(1 -cos ~a), 9.
a

where M is a constant matrix. The sum over a runs over all the generators of
the gauge group, and the gauge couplings e~ have been absorbed into M. By
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MAGNETIC MONOPOLES 469

an argument similar to that invoked above (see also Section 4.2), we can
derive the generalized Dirac quantization condition

exp(i2nM) = 10.

That is, M must have integer eigenvalues.
For example, in the SU(5) grand unified model, the electric charge

generator may be written as a 5 x 5 matrix

Qem diag ~± ± _1~- ~,3, 3, 3, O, --1), 11.

where the diag(-, , , ,-) notation denotes a diagonal matrix with
the indicated eigenvalues. The eigenvalues of (~¢m are the electric charges, in
units of e, of the elements of the 5 representation of SU(5)--antidown
quarks, in three colors, the neutrino and the electron. The color SU(3)
generators are traceless 3 × 3 matrices acting on the quarks only; one of
these is

Qco~or= diag (-½, _ ~,1 ~,2 0, 0). 12.

A matrix M that satisfies Equation 10 is

M = Qem+Qco~of = diag(0,0, 1,0, -1), 13.

and the magnetic charge of the monopole described by Equation 13 is the
coefficient of eQem in ½M, or 1/2e -- go, the Dirac charge.

In the SU(5) model, a restatement of the criteria in Equations 10 and 
for the existence of a magnetic monopole with the Dirac charge is

exp [i2rcQ~m] = diag [exp (i2n/3), exp (i2n/3), exp (i2n/3), 1, = Z14.

where Z is a nontrivial element of Z3, the center of color SU(3). Equation 
is just a fancy way of saying that objects that carry trivial color SU(3) triality
have integer electric charge (in units of e), even though objects with
nontrivial triality have fractional charge. That the U(1) group generated 

Qem contains the center of color SU(3) also has a topological significance,
which is elucidated in Sections 4 ~tnd 5.

Another interesting generalization of Equation 5 applies to dyons,
objects that carry both electric and magnetic charge. Consider the two
dyons with electric and magnetic charges (Qle, Mlgo) and (Q2e, Mzgo).
Each dyon is unable to detect the string of the other if and only if (34)

QIM2-Q2M~ = n, i, 15.

where n is an integer. The minus sign in Equation 15 arises because
transporting the first dyon counterclockwise around the string of the
second is equivalent to transporting the second dyon clockwise around the
string of the first.
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470 PRESKILL

The condition represented by Equation 1:5 requires all magnetic charges
to be integer multiples ofgt~, if there exists a particle with Q = 1 and M -- 0.
But magnetically charged objects are allowed to carry anomalous electric
charges. Equation 15 is satisfied if Q and M for all dyons are related by

Q = n- ~--M, 16.

where n is an integer, and 8 is an arbitrary parameter defined modulo 2re (see
Figure 3). For a dyon carrying more than one type of magnetic charge, there
is a distinct ~ for each type.

The significance of the parameter 9 is discussed further in Sections 6 and
7. Here we merely note that the dyon charge spectrum (Equation 16)
violates CP unless 9 is 0 or ~, because Q is CP odd, and M is CP even.

So far, we have taken the magnetic monopole to be pointlike; the
magnetic field (Equation 2) is singular at the origin. But it is obvious that
our derivation of the quantization condition will also apply to a non-
singular field that approaches the form of Equation 2 at large distances.
Such a nonsingular monopole is constructed in Section 3.

~ -O/2rr
0 0

o

M

Figure 3 Electric charges (Q) and magnetic charges (M) allowed by the Dirac quantization
condition.
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MAGNETIC MONOPOLES 471

3. MONOPOLES AND UNIFICATION

3.1 Unification, Charge Quantization, and Monopoles
Dirac showed that quantum mechanics does not preclude the existence of
magnetic monopoles. Moreover, the existence of monopoles implies
quantization of electric charge, a phenomenon observed in Nature. The
monopole thus seems to be such an appealing theoretical construct that, to
quote Dirac, "one would be surprised if Nature l~ad made no use of it" (1).

Nowadays, we have another way of understanding why electric charge is
quantized. Charge is quantized if the electromagnetic U(1)ern gauge group 
compact. But U(1)en~ is automatically compact in unified gauge theory in
which U(1) .... is embedded in a nonabelian semisimple group. [Note that
the standard Weinberg-Salam-Glashow (35) model is not "unified" accord-
ing to this criterion.]

In other words, in a unified gauge theory, the electric charge operator
obeys nontrivial commutation relations with other operators in the theory.
Just as the angular momentum algebra requires the eigenvalues of J, to be
integer multiples of ½h, the commutation relations satisfied by the electric
charge operator require its eigenvalues to be integer multiples of a
fundamental unit. This conclusion holds even if the symmetries generated
by the charges that fail to commute with electric charge are spontaneously
broken.

These two apparently independent explanations of charge quantization
are not really independent at all. Dirae found the existence of monopoles to
imply charge quantization, but the converse, in a sense, is also true. Any
unified gauge theory in which U(1)cm is embedded in a spontaneously
broken semisimple gauge group, and electric charge is thus automatically
quantized, necessarily contains magnetic monopoles. The discovery of this
remarkable result, by ’t Hooft (3) and Polyakov (2), ushered in the modern
era of monopole theory.

In contrast to Dirac’s demonstration of the consistency of magnetic
monopoles with quantum electrodynamics, t’ Hooft and Polyakov de-
monstrated the necessity of monopoles in unified gauge theories.
Furthermore, the properties of the monopole are calculable in a given
unified model. In particular, its mass can be related to the masses of certain
heavy vector bosons, while in Dirac’s formulation of electrodynamics, the
monopole mass must be regarded as an arbitrary free parameter.

There has been much speculation in recent years about "grand unified"
models of elementary particle interactions, in which the standard low-
energy gauge group SU(3)eo~or x [SU(2) x U(1)]e~eet ..... k is embedded 
simple gauge group that is spontaneously broken at a large mass scale. The
simplest model of this type is the SU(5) model (4). But the prediction 
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magnetic monopoles must exist applies to any grand unified model, and
also to the even more ambitious models purporting to unify gravitation
with the other particle interactions.

3.2 Monopoles as Solitons

In this section we show how magnetic monopoles arise in unified gauge
theories as solutions to tlhe classical fieh:l equations. A semiclassical
expansion about the classical monopole solution can be carried out to
arbitrary order in h, but for now we confine: our attention to the classical
approximation. Some properties of the semiclassical expansion in higher
order are discussed in Section 6.

Here we consider the simplest unified gauge theory containing a
monopole solution (36). The generalization to more complicated models 
described in Sections 4 and 5.

The model has the gauge group SU(2) and a Higgs field ¯ in the triplet
representation of the group; its Lagrangian is

.~ = _ ±l~’a,~_~_~’~va +½D~f~aD~t~a __ U(~), 17.

where

U(~) = &8,~(f~af~a --/)2)2, 18.

Du~~ = O.@" -- ee"b~W~@~, 19.

Fa~ = d, Wy ,~ W~ a~"W~W~--~v..~--ee ,,~,,v, 20.

and a = 1, 2, 3. The energy density can be written as

~= ±r~a~2 ~ "~ + B~a B~ ~ + Dfl~"Di~~] + U((I)), 21.

where

.... ~ F" 22.Ei = Foi, Bi -- ~ijk jk"

Since ~ >_ 0, the classical "vacuum" of this theory is a field configuration
such that ¢ = 0. In the "unitary" gauge, the: scalar field q~ may be written

qb = (0,0,v+q~), 23.

and the vacuum configuration is

=0, =0. 24.
To determine the perturbative spectrum in this gauge, we substitute
Equation 23 into the Lagrangian. Since

= +...) E(w2) 25.
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MAGNETIC MONOPOLES 473

and

U((I)) ~--- ½,~/)2~02 q- 26.

we find that the theory has undergone the.Higgs mechanism; there is a
massless "photon" W~ that couples to the unbroken O(1)em current, as well
as charged vector bosons W~ with mass

Mw = ev ~ 27.

and a neutral scalar with mass

Mn = x/~v. 28.

To investigate the spectrum of this theory beyond perturbation theory,
let us determine whether there is a stable time-independent solution to the
classical field equations other than the vacuum solution. Equivalently, we
seek a field configuration at a fixed time that is a local minimum of the
energy functional j’d3ro ~. Such a "soliton" configuration behaves like a
particle in the classical theory, and can be expected to survive in the
spectrum of the quantum theory.

Our search for a nontrivial local minimum of the energy functional will
surely succeed if there are field configurations that cannot be continuously
deformed to the vacuum configuration while the total energy remains finite.
For if we start with such a configuration and deform, it until a local
minimum is obtained, the final configuration is guaranteed to be different
from the vacuum solution.

Furthermore, it is easy to demonstrate the existence of such a configur-
ation. For a field configuration of finite energy, the scalar field q) is required
to approach a minimum of the potential U(*) at large distances, but * 
free to select different minima of U in different spatial directions. The
asymptotic behavior of * defines a mapping .a(f) = lim *a(ar) such 

(1)a(l.~)(I~a(l~) = /)2 ; 29.

that is, a mapping from the sphere at spatial infinity to the sphere of minima
of V(@).

Consider a "hedgehog" configuration such that the mapping *a(0 is the
identity mapping

¯ a(0 = v/°. 30.

It is evident that there is no way of continuously deforming the mapping of
Equation 30 to the trivial mapping *a(?) = constant, while preserving the
finite-energy condition, Equation 29. The number of times the mapping
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474 PRESKILL

(I)°(F) "wraps around" the manifold of minima of U((I)) is an integer. 
integer cannot change continuously, this "winding number" is preserved by
continuous deformations ; it is said to be a "topological invariant." But the
hedgehog configuration has winding number 1, and the vacuum configur-
ation has winding number 0. Therefore, the vacuum configuration cannot
be obtained by any continuous deformation of the hedgehog configuration
that is consistent with Equation 29.

It only remains to verify that there really is a hedgehog configuration that
asymptotically approaches Equation 30 and has finite energy, The
contribution ~-j’d3x(Di*")~ to the energy is finite only if Oflp° approaches
zero at large r sufficiently rapidly. We therefore require

Di@" ~ 0 31.

for large r, or
^ fif~

Wia ~ ~iakr~ and B~ ~- 32.
e?" ’ C~"2 "

The long-range gauge field (Equation 32) is a U(1)~m gauge field that carries
magnetic charge e-~ 1/e [where U(1)e m !iS the subgroup of SU(2) left
unbroken by the scalar field, Equation 30]. The charge 1/e is really the
Dirac magnetic charge in this model, since it is possible to introduce matter
fields in the doublet representation of SU(2) that carry electric charge

We thus conclude that there must be a stable, finite-energy, time-
independent solution to the classical equations of motion such that the
asymptotic scalar field configuration ¢~(~) has winding number 
Finiteness of the energy requires the long-range gauge field of this soliton to
be the field of a Dirac magnetic monopole.

In general, we may consider field configurations such that the winding
number is an arbitrary integer. Since time evolution is continuous, and the
winding number is discrete, it must be a constant of the motion in the
classical field theory. We have seen that this "topological conservation law"
is equivalent to conservation of magnetic charge. The conservation law
snrvives in quantum theory because the probability of quantum mechanical
tunneling between configurations with different winding numbers vanishes
in the infinite volume limit.

The above discussion of the topological charge and its connection with
magnetic charge is reformulated in much more general language in
Section 4..

3.3 The Monopole Solution

We have demonstrated the existence of a time-independent monopole
solution to the classical field equations. Let us now consider how the
solution can be explicitly constructed.
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MAGNETIC MONOPOLES 473

The task of finding an explicit monopole solution is greatly simplified
if we make the plausible assumption that the solution is spherically
symmetric. In a gauge theory, it is not sensible to demand more than
spherical symmetry up to a .gauge transformation; we say that the scalar
field configuration *~(r), for example, is spherically symmetric if the effect 
a spatial rotation of ~a(r) can be compensated by a gauge transformation.
The asymptotic behavior of *a given by Equation 30 and of W~a given by
Equation 32 is invariant under a simultaneous rotation and global SU(2)
gauge transformation. Let us assume that this invariance, and also in-
variance under the "parity" transformation

hold for all r. We thus obtain the ansatz (2, 3)

*a(r) vfaH(Mwr)

W/~(r) = eiakr~ E1 K(Mwr)].er
34.

Finite-energy solutions will obey the boundary conditions

H=0, K= 1 (r = 0);

H = 1, K = 0 (r = oo).
35.

H and K satisfying the classical field equations can now be obtained by
numerical methods (20, 37). [In fact, an analytical solution is possible in the
limit 2 = 0 (38, 39).] Here we merely note a few general features of the
solution.

The gauge field W/a rapidly approaches its asymptotic value outside a
core with radius of order R¢; the heavy gauge fields are excited only inside
the core. The size Ro is chosen to minimize the sum of the energy stored in
the magnetic field outside the core and the energy due to the scalar field
gradient inside the core. In order of magnitude these are

Emag ~ 4rroZR~ 1 ~ (4rc/eZ)R~ 

E .... ~ 4nRov2 ,,, (4z~/e2)M~vR~, .36.

so the core size is determined to be

R~ ,., M~,1. 37.

The energy of the solution, the monopole mass rn in the classical
approxima.tion, does not depend sensitively on the scalar self-coupling 2;
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476 PR.ESKILL

one finds

47grn = MwfO~/e2), 38.

where f is a monotonically increasing function such that (37)

f(O) = 

f(oo) = 1.787. 39.

The mass m becomes independent of 2 for large 2 because the scalar
field approaches its asymptotic form outside an inner core with radius
RH ~ Mff 1, and the scalar field energy stored in the inner core is of order

Esealar ,-~ 4~z~.v4 R3n "~ m(Mw/Mn), 40.

which becomes negligible for large 2.
Comparing Equations 37 and 38, we see that the size of the monopole

core is larger by the factor 0~- a -- (4~r/e2) than the monopole Compton
wavelength. As a result, the quantum corrections to the structure of the
monopole are Under control, if~ is small. Ew~n though the coupling ~/= 1/e
is large, the effects of virtual monopole pairs are small, because the
monopole is a complicated coherent excitation that cannot be easily
produced as a quantum fluctuation. (See Section 6.)

This situation should be contrasted with the quantum mechanics of a
point monopole. Virtual monopole pairs have a drastic effect on the
structure of the point monopole, for which ~/:is a genuine strong coupling. In
fact, the vacuum-polarization cloud of a point monopole must extend out
to distances of order (~m)-r, because the magnetic self-energy of 
monopole of that size is of Order m. Thus, both the nonsingular monopole
and the point monopole have a complicated structure in a region with
radius of order (~m)-1. But for the nonsingu.lar monopole, we have 
explicit classical description of this structure, and quantum corrections are
small and calculable if~t is small. The point raonopole, on the other hand, is
a genuine strong-coupling problem. We cannot calculate anything.

We have shown how the magnetic monopole arises as a solution to the
classical field equations in a simple SU(2) gauge theory. The discussion 
generalized in Section 4 and various more complicated examples are cited
in Section 5.

It turns out (40) that in many, but not all (41), more complicated examples
it is possible to construct a monopole solution that satisfies a suitable
generalization of the spherically symmetric ansatz, Equation 34. But
nothing further is said here .about the construction of explicit solutions.
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MAGNETIC MONOPOLES 477

4. MONOPOLES AND TOPOLOGY

4.1 Monopoles without Strings

The Dirac string is a considerable embarrassment in monopole theory. It is
disconcerting to find that the vector potential that describes a Dirac
monopole has a string singularity along which the magnetic field is
formally infinite, even though we can argue that the string is undetectable.
One is therefore encouraged to discover that it is possible to eliminate the
string (42).

Let us consider the vector potential on a sphere centered at the mono-
pole. (The monopole may be either pointlike or nonsingular; in the latter
case we choose the radius of the sphere to be much larger than the core
radius.) The trick by which we avoid the string is to divide the sphere into
upper and lower hemispheres, and define a vector potential on each. For
example, we may choose the nonvanishing component of A on each hemi-
sphere to be

A¢u = g(1--cos O), upper < 0 < ,

where Ae is. defiried ~by A" dr = Aodq~. Both Av and AL are nonsingular on
their respective hemispheres, and both have the curl

B = ,9~-. 42.

On the region where the hemispheres intersect, the equator (~ = ~/2), 
must require that Au and AL describe the. same physics; therefore, they
differ by a gauge transformation. And, indeed

43.

where

.~(qg) = exp [-i2eo~o]. 44.

Iff~ is not single-valued, then the change in the phase of the wave function of
an electron, as the electron is transported around the equator, is ill defined.
So we must demand

n
e9 = 5’ 45.
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where n is an integer. We have thus found an alternative derivation of the
Dirac quantization condition, in which the string singularity makes no
appearance.

It is easy to see that this quantization condition applies to any vector
potential on the sphere, not just one with the special form of Equation 41. In
general, if the nonsingular vector potentials A° and AL defined on the upper
and lower hemispheres differ by a gauge transformatio~a f~(~o) at the
equator, then we may interpret ~(q~) as an object that detects the total
magnetic flux * thi’ough the sphere. If ~q’.(q~ = 0) = 1, then f~(q~ = 
satisfies

f~(~p = 2n) = exp [ie{dx" ° -- AL)] = exp [i e(dPU

= exp [ie(4ng)], 46.

where the line integral is taken along the equator, and g is the magnetic
charge enclosed by the sphere. Single-valuedness of f~(tp) again implies
Equation 45.

The integer n, the magnetic charge of the monopole in Dirac Units, is a
winding number; it is the number of times t)(~o) covers the U(1)em 
group as ~p varies from 0 to 2n. So we have discovered a topological basis for
the Dirac quantization condition. Magnetic charge is quantized because
the winding number must be an integer.

If we now allow the radius r of the sphere to vary, f~(cp, r) and the winding
number n are continuous functions of r as long as At~ and AL are non-
singular. Since n is required to be an integer, it must be a constant,
independent oft. Ifn is nonzero, we are forced to conclude that the magnetic
charge g is contained in an arbitrarily small sphere; the monopole is a point
singularity.

It is possible to avoid the singularity only if f~ is allowed to wander
through a larger gauge group containing U(1)¢m. This is precisely the option
exercised by the nonsingular monopole described in Section 3, which has
nonabelian gauge fields excited in its core.

4.2 Topological Classification of Alonopoles

It is easy to generalize the above discussion to apply to magnetic monopoles
with nonabelian, long-range gauge fields, and thus obtain a topological
definition of magnetic charge appropriate for the n0nabelian case (21, 43).

Let us consider gauge fields, defined on a sphere, in the Lie algebra of an
arbitrary Lie group H. As before, we describe the gauge field configuration
by specifying nonsingular gauge potentials Av and AL on the upper and
lower hemispheres, and a single-valued gauge transformation f~(tp), which
relates AU and AL on the equator. The gauge transformation f~(tp) is 
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"loop" in the gauge group H, a mapping from the circle into H. We define
the magnetic charge enclosed by the sphere to be the winding number of
fl(g0). This is the natural nonabelian generalization of the abelian magnetic
charge.

For example, suppose that the gauge group is H = SO(3). It is well
known that SO(3) is topologically equivalent to a three-dimensional sphere
with antipodal points identified. Therefore, there are closed paths in SO(3),
those beginningat one point of the three-sphere and ending at an antipodal
point, which cannot be continuously deformed to a point. Such a path is
said to have winding number 1. But a path that begins and ends at the same
point of the three-sphere can be continuously deformed to a point; it has
winding number 0. Thus, the winding number of a loop in SO(3) can have
only two possible values, 0 and 1, and the magnetic charge in an SO(3)
gauge theory can have only the values 0 and 1. In particular, a magnetic
monopole is indistinguishable from an antimonopole.

In general, the closed paths in a Lie group H beginning and ending at the
identity element of H fall into topological equivalence classes, called
"homotopy" classes (44). Two paths are in the same class if they can 
continuously deformed into one another. The classes are endowed with a
natural group structure, since the composition of two paths may be defined
to be a path that traces the two paths in succession. This group is called
tel(H), the "first homotopy group" of H. According to the above remarks,
~q[SO(3)] is Z2, the additive group of the integers defined modulo 

The example H = SO(3) exhibits all the essential features of the general
case. Every Lie group H has a covering group H, which is simply connected;
that is, such that rc1(/-7) is trivial. For H = SO(3), the covering group 
~---SU(2), which is topologically equivalent to the three-sphere itself,
without antipodal points identified. The Lie group H is always isomorphic
to the quotient group H/K, where K is a subgroup of the center of/~. The
center is a discrete subgroup of/-7 that commutes with all elements of H. For
/~ = SU(2), the center is Z2, consisting of the elements 1 and - 1, and SO(3)
is isomorphic to SU(2)/Z2. In general, we may think of the group H as the
group ~, but with elements differing by multiplication by an element of K
identified as the same element.

All paths in H that begin and end at the identity element of H correspond
to paths in/~ that begin at the identity and end at an element of K. And the
topological class of a path in H can be labeled by the end point of the
corresponding path in/~,just as the class of a path in SO(3) is determined 
whether it ends at its starting point on the three-sphere or at the antipodal
point. So we finally have

tel(H) = ~rI(H/K) = K. 47.
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For H = U(1), which is covered by/~ = R, the additive group of the real
numbers, K is .Z, the integers. For H = SO(3), K is Z2, and for any simple
Lie group H, K is ZN, for some integer N.

Our topological definition of the nonabelian magnetic charge is sensible.
As long as the gauge fields are nonsingular and ~ is an element of H, the
winding number must be a constant, independent of the radius of the
sphere. So the magnetic charge is not carried by the long-range field of a
monopole; it resides on a point singularity ,(Dirac monopole) or a core 
which gauge fields other than the H gauge :fields are excited (nonsingular
monopole). And this magnetic charge is obviously conserved. It is a discrete
quantity. But time evolution is continuous, and a discrete quantity can be
continuous only by being constant.

While other gauge-invariant definitions of magnetic charge are possible
(33), only the topological definition, which re,quires a magnetic monopole 
have a point singularity or a core, can guarantee the stability ofa monopole.
If we assign "magnetic charge" to an H gauge field configuration that is
nonsingular everywhere in space, nothing can prevent this "magnetic
charge" from propagating to spatial infinity as nonabelian radiation
(21, 45).

So far we have only considered magnetic monopole configurations in
classical gauge field theory. Eventually, we must worry about quantum
mechanical effects on the magnetic field. The:re is really something to worry
about, because we believe that nonabelian g~tuge field theories are confining
and have no massless excitations. Therefore the magnetic field cannot
survive at arbitrarily large distances, it must be screened at distances larger
than the confinement distance scale (21, 31). The mechanism of magnetic
screening is briefly discussed in Section 6.4.

Fortunately, since our definition of magnetic charge is topological, it can
be applied in the quantum theory, and conservation of magnetic charge is
still guaranteed. The gluon fluctuations about the classical long-range
magnetic field, which cause the magnetic screening, cannot change the
winding number of the classical field.

4.3 Magnetic Char~Te of a Topolo#ical Soliton

The object of this section is to generalize the discussion of topological
solitons in Section 3 to an arbitrary gauge :group, and to demonstrate the
general connection between the topology of a soliton and its magnetic
charge.

We consider an arbitrary gauge field theory, with gauge group G, which
undergoes spontaneous symmetry breakdown to a subgroup H. Acting as
an order parameter for this symmetry-breaking pattern is a multiplet of
scalar fields q~, transforming as some (in general reducible) representation 
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G. The classical potential U(rb) has many degenerate minima, and 
identify one arbitrarily chosen minimum as (I) o. H is the "stability group" of
(I)o, the subgroup of G that leaves (I) 0 invariant.

We find it convenient in this section to ass~ume that G is simply
connected, tel(G) = 0. This assumption entails no loss of generality, because
we may always consider G to be the covering group of a specified Lie group.

We wish to construct finite energy solutions to the classical field
equations of this gauge field theory. Therefore, we restrict our attention to
field configurations such that ¯ approaches a minimum of U((I,) at spatial
infinity. Barring "accidental" degeneracy, degenerate minima of U not
required by G symmetry, the manifold of minima of U is equivalent to the
coset space G/H,

G/H = {(I): (I) = 12~o, l’} ~ 48.

Associated with each finite-energy field configuration is a mapping from
the two-dimensional sphere S2 at spatial infinity into the vacuum manifold
G/H. As noted in Section 3.2, a field configuration is a topological soliton if
this mapping cannot be continuously deformed to the trivial constant
mapping that takes all points on S2 to qbo.

By multiplying by an appropriate constant element of G, we may turn
any mapping from S2 into G/H into a mapping that takes an arbitrarily
chosen reference point, the north pole, say, to ~0. [This procedure suffers
from an ambiguity if H is not connected (19). A consequence of this
ambiguity is explained in Section 5.4.] Mappings from S2 into G/H that
take the north pole to ~o fall into topological equivalence classes,
homotopy classes, such that mappings in the same class can be continu-
ously deformed into one another. These classes are endowed with a natural
group structure, since there is a natural way of composing two mappings
that both take the north pole to q~0 (see Figure 4). This group is rc2(G/H), the
"second homotopy group" of G/H (44).

The group ~2(G/H) is discrete; its elements are the possible "topological
charges" of finite-energy field configurations. Since time evolution is
continuous, the discrete topological charge must be a constant of the
motion. The classical field theory has a "topological conservation law."

We found that the topological charge of the soliton constructed in
Section 3 could be identified with its magnetic charge. We can now show
that this identification applies in general (19).

Mappings from the sphere S2 into the coset space G/H are not very easy
to visualize. Fortunately, we can, by a trick, reduce the topological
classification of these mappings to the topological classification of closed
paths in H. That is, we can reduce the calculation of ~z2(G/H) to the
calculation of zcl(H), and we already know how to calculate ~tl(H).
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The trick is to cut the sphere into two hemispheres, along the equator.
Each point (~9, (p) on the sphere is mapped to some ~I~(9, (p)~ G/H. On the
upper and lower hemispheres we can find srnooth gauge transformations

~v and ~’~L that take @ to ~o :

f~u(8, ~o)~(~9, ~o1 = q~o, tipper 0 _< ~ _<. ,

f~L(O, ~0)~(~, qg) = lower _< 9 _< r~ . 49.

On the region where the hemispheres interse, ct, the equator (~ = ~/2), the
gauge transformation f2u~£~ is defined, It leaves q~o invariant, and is
therefore an element of H. So

defines a closed path in H. We have thus found a natural way of associating
with each mapping from Sz into G/H a closed path in H.

This association actually defines a group homomorphism from rcz(G/H)
to ~(H). If we choose the arbitrary reference point that is mapped to o to
be a point on the equator, instead of the north pole,’ then it is obvious that
the composition of mappings from S~ into G/H corresponds to the
composition of loops in H, and the group structure is preserved.

The kernel of this homomorphism is trivial because, if f~(cp) has winding
number zero, then it can be continuously deformed to the trivial loop
f~(~p) = 1. Therefore, there is a smooth gauge transformation in G, defined
on the whole sphere, which takes ~1~9, (p) to ~0. Furthermore, it is known that
fez(G) = 0 for any compact Lie group G (46,). Thus, this gauge transform-
ation can be continuously deformed to a trivial gauge transformation, and
the mapping ~(9, ~o) can be continuously deformed to ~o. Therefore, the

Fi,qure 4
to ~o.

Composition of two mappings from S2 into G/H that take the north pole (black dot)
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homomorphism takes only the identity element of n2(G/H) to the identity
element of nl(H).

Moreover, if G is simply connected, we can show that this homomorph-
ism is onto ; every element of r~l(H) is the image of some element of n2(G/H).
Given any loop f~(go) in H we can find smooth gauge transformations f~v
and ~L in G, defined on the upper and lower hemispheres, such that

51.

because we may choose f~u(0, go) to be the continuous deformation of the
loop f~u(9 = re/2, ~o) to the point f~u(9 = 0), which is guaranteed to exist 
is simply connected. Then

(I)(0, go) = 52.
(Po ~-_< 0_< ~,

is a smooth mapping from Sz into G/H associated with the loop
We have now established the group isomorphism

zc:(G/H) = rq(H), 53.

which holds if G is simply connected, lit is easy to see, by slightly modifying
the above argument, that the general result is n:(G/H)= nI(H)/nl(G).] As
promised, we have found that the topological classification of mappings
from S: into G/H is equivalent to the topological classification of loops
in H.

Since we have already seen that the elements of the group n~(H) specify
the possible magnetic charges of a configuration with long-range H gauge
fields, we suspect, in view of Equation 53, that the topological charge of a
finite-energy field configuration coincides with its magnetic charge. To
verify this conjecture, we must consider the long-range gauge field of the
soliton.
As we saw in Section 3, a finite-energy field configuration must obey

Dit~ = (Oi -- ieA~Ta)dP = 0 54.

on the sphere at spatial infinity, where the Tas are the generators of G in the
representation according to which @ transforms. In the gauge constructed
above, in which ̄  = ō is a constaiat on the sphere, the only gauge fields
that can be excited at large distances are the H gauge fields, those associated
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with the generators of G that annihilate ~0. The gauge transformation
(Equation 49) is nonsingular except on the equator, so the gauge fields ~

and AL defined on each hemisphere are nonsingular in this gauge. But on
the equator they differ by the gauge transformation D(tp). The winding
number of ~(~o), which we have now seen is the topological charge of the
soliton, is also the magnetic charge defined in Section 4.2. So topological
charge equals magnetic charge.

We have now verified the claim in Section 3.1, thatany unified gauge
t~eory.in wlJich U(1)em is embedded in a spontaneously broken semisimple
gS.uge~ group necessarily contains magnetic monopoles as topological
solitons. There are topologically stable finite-energy solutions to the
~lassical field equations associated with each element of ~r2(G/H). We have

now learned that ~2(G/H) = 7rl(H), if G is chosen to be simply connected,
and that ~r~(H) contains the integers if H has a U(1)em factor. Finally, we
have found that the integer labeling an element of ~ZE(G/H) is precisely the
magnetic charge in Dirac units. [The Dirac magnetic charge is that
corresponding to the minimal U(1)~m charge occurring in a representation
of the simply connected gauge group G.]

We discuss further applications for our topological formalism when we
analyze the examples of gection 5.

4.4. The Kaluza-Klein Monopole

Kaluza-Klein theories (47), which unify Einstein’s theory of gravitation
with other gauge interactions, also contain topological solitons that can be
identified as magnetic monopoles. The connection between ~he topological
charges and magnetic charges of these objects are described here. This
connection is closely analogous to, but not exactly the same as, that
discussed in Section 4.3.

The basic hypothesis of Kaluza-Klein theory is that space-time is not
really 4-dimensional, but (4+n)-dimensional. The (4+n)-dimensional
space-time is endowed with a metric satisfying a (4+n)-dimensional
generalization of Einstein’s equations, but n dimensions have become
spontaneously compactified to a manifold N with radii of order the Planck
length. At low energies, far below the Planck mass, the effects of the
microscopic compact dimensions cannot be perceived directly, but a
remnant of the underlying (14 + n)-dimensional theory may survive. The
metric on the compact n-dimensional manifold N is typically invariant
under some group H of isometries, and the massless fields of the theory
include, in addition to the four-dimensional metric, spin-one gauge fields
associated with H. These gauge fields are.components of the (4+n)-
dimensional metric that have managed to avoid acquiring large masses
upon compactification. Low-energy physics is described by an effective
four-dimensional field theory that is an H-g~tuge theory coupled to gravity.
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The classical vacuum solution of the Kaluza-Klein theory is assumed to
be M¢ x N, the direct product of four-dimensional Minkowski space and
the compact manifold N. Any classical field configuration that approaches
the vacuum solution at spatial infinity thus defines an N "bundle" (44) over
the sphere at spatial infinity S2. This bundle has the local structure of a
direct product S2 x N; that is, the manifold N sits on top of every point of
S2. But it need not be a direct product #lobally. If the N bundle over S2

cannot be continuously deformed to the global direct product S2 x N, then
the field configuration cannot be continuously deformed to the vacuum
solution; it is a topological soliton.

To perform the topological classification of N bundles over S2, we cut the
sphere S2 into two hemispheres, along the equator. The N bundles over the
two hemispheres DU and DL are then easily deformed to direct product
bundles, D° x N and DL x N, by performing coordinate transformations
on each hemisphere. Along the equator, these two coordinate transform-
ations must differ by a transformation that leaves the geometry of the
manifold N invariant; that is, an isom¢try of N. Thus we can associate with
every N bundle over S2 a loop in the isometry group/-/. The N bundle over
S2 is topologically nontrivial if and only if the loop in H has a nontrivial
winding number. We conclude, as before, that all topological solitons have
H-magnetic charges.

The Kaluza-Klein monopole solution has been explicitly constructed in
the simplest Kaluza-Klein theory, the five-dimensional theory in which N is
a circle and H is U(1) (48, 49). It has some interesting properties. 
particular, the four-dimensional constant time slices of both the mono-
pole and antimonopole solution have handles; therefore, a monopole-
antimonopole pair has a different toplogy from the vacuum, and cannot
annihilate classically.

Generally, one expects a Kaluza-Klein monopole to have a mass rn of
order (1/e)Mplanok. In the five-dimensional theory it has been found that

m = ¼~-l/2Mplanek ’~ 5 × 1019 GeV. 55.

As we see in Section 8.2, this is an interesting mass from an astrophysic~il
viewpoint.

4.5 Monopoles and Global Gauge Transformations

It was recently discovered (50, 51) that a global gauge transformation
cannot be defined in the vicinity of a magnetic monopole with a nonabelian
long-range magnetic field, unless the gauge transformation acts trivially on
the long-range field. Implications of this result are considered in Section 6.
Here we sketch the proof, which is simple and involves topological concepts
that we have already encountered.

A classical field f on a sphere surrounding a magnetic monopole is
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defined by specifying smooth functions fu and fg on the upper and lower
hemispheres, and the gauge transformation ~,~, which relates fo and fL on
the equator, where the hemispheres intersect :

f~(cp) is a loop in the gauge group H with a nontrivial winding number; the
winding number is the magnetic charge of tl~te monopole.

A local gauge transformation of f on the sphere consists of gauge
transformations flu and f~L on the two hemispheres that preserve the
relations (Equation 56) 

57.

To define an infinitesimal global gauge transformation on the sphere
surrounding the monopole, we must specify a set of generators { Ta} of the
gauge group H at each point of the sphere. If the transformation is globally
defined, the commutation relations satisfied by the generators must be
independent of the position on the sphere, but we still have the freedom to
perform a local redefinition of the generators of the form

Ta(L,q, q)) = ~.,(tg, q))Ta~ - 1(~9, 58.

where E ~ H. The redefinition of the generators determined by E is called an
inner automorphism of the Lie algebra H of the group H. The group aut H
of inner aUtomorphisms (which is the connected component of the group
Aut H of all automorphisms preserving the Lie algebra H) is evidently
isomorphic to H/K where K is the center of H, since the elements of K, and
only the elements of K, define trivial automorphisms (52).

A global gauge transformation of f on the sphere must be compatible
with Equation 56. Therefore, the generators have the form

Td(~, cp) = Zu(9, cp)T"2t~ 1(~, (p), upper < ~ < ,

T~(O,q)) = 2~(O,~o)ra2ff~(~,~o), lower ~- _< ~ _< ~ , 59.
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where

or

We see that Z~ ~(n/2, ,)fl(O)X~(n/2~ ~) defines a trivial automorphism, 
is therefore an element of the center of H. If H is semisimple, its center is
discrete, and we have

w~ere ~o is a constant element of the center. If we now allow 8; the
argument of Nu(£~) to vary smoothly from 8 = g/2 to ~ = 0(8 ~ ~) 
Equation 61, we find that the loop ~(~) in H can be continuously deformed
to a point, and therefore has winding number zero.

We are forced to conclude, if H is semisimple, that a global H trans-
formation can be performed on a sphere only if the sphere encloses no H
magnetic charge. In the vicinity of a nonabelian monopole, a global
nonabelian gauge transformation cannot be implemented~

There is obviously no topological obstacle to defining globally the
generators that commute with ~. So global gauge transfo~ations of the
U(1) magnetic monopole can be performed, In general, we can define any
global gauge transformation that acts trivially on the long-range gauge
field, and hence leaves ~ intact.

5. EXAMPLES

5.1 A Symmetry-Breaking Hierarchy

In order to illustrate the topological principles developed in Section 4, we
consider various examples of model gauge theories containing magnetic
monopoles. In all these examples, it is possible (40) to construct explicit
monopole solutions by using suitable generalizations of the spherically
symmetric ansatz of Section 3.3. But here we note only the general
properties of the monopoles, and do not exhibit explicit solutions.

Our first example illustrates the importance in monopole theory of the
global structure of the unbroken gauge group. Consider a model with gauge
group G = SU(3) and a scalar field * transforming as the adjoint (octet)
representation of G : * can be written as a hermitian traceless 3 x 3 matrix,
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which, under a gauge transformation f~(x), transforms according 

O(x) ~ f~(x)@(x)f~- 62.

Suppose that q) acquires the expectation value

(@) ~o (b) diag ~ 1-- = (~,-~, -- 1),

where v is the mass scale of the symmetry breakdown, and the " ~ td~ag (7,5, - 1)
notation denotes a diagonal matrix with the indicated eigenvalues.

The unbroken subgroup H of G, the stability group of ~0, is locally
isomorphic to SU(2) x- U(1). "Locally isomorphic" means that H has 
same Lie algebra of infinitesimal generators as SU(2) x U(1). The gener-
ators of H are the SU(3) generators that commute with q)0. These are 
SU(2) generators that mix the two degenerate eigenstates of~o, and also the
U(1) generator

(½,~, - 1), 63.Q .= diag 1 1

which is proportional to q)o, and obviously commutes with it. [The eigen-
values of Q are the U(1) electric charges of the members of the SU(3) triplet,
in units of e.]

To perform the topological classification of monopole solutions in this
model, we need to determine rcz(G/H) =’nx(H). So it is not sufficient 
know that H has the local structure of the direct product SU(2) × U(1); 
must know its global structure. For this purpose, we check to see whether
the U(1) subgroup of G generated by Q has any elements in common with
the unbroken SU(2) subgroup, other than tlhe identity. And, indeed

exp (i2~tQ) = diag (- 1, - 1, 64.

is the nontrivial element of the center Zz of SU(2). We conclude that

n = [SU(2) x U(1)J/Z2, 65.

where "=" denotes a global isomorphism; there are two elements of
SU(2) x U(1) corresponding to each element of 

The topologically nontrivial loops in H consist of loops winding around
the U(1) subgroup of H, and also of loops traveling through the U(1)
subgroup from the identity to the element in Equation 64, and returning to
the identity through the SU(2) subgroup of H. If we had failed to recognize
that H is not globally the direct product SU(2) x U(1), we would 
missed the latter set of nontrivial loops, and thus missed half of the
monopole.solutions in this model.

The monopole with minimal U(1) magnetic charge defines a loop that
winds only half-way around U(1); it necessarily also has Zznonabelian
magnetic charge. We anticipated the existence of this solution in our
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discussion of the generalized Dirac quantization condition in Section 2.2.
Equation 64 implies that objects with trivial SU(2) "duality" have integer
U(1) charge, although objects with nontrivial duality can have half-integer
charge. According to the discussion of Section 2.2, a monopole can exist
with the Dirac U(1) magnetic charge gD = 1/2e, provided that it also carries
an SU(2) magnetic charge. Alternatively, the charge carried by this
monopole can be regarded, in an appropriate gauge, as the U(1)’ charge
generated by

Q’ = T3+Q -- diag(1,0, -1), 66.

where

T3 = diag (½, -½, 0), 67.

is an SU(2) generator. The monopole with minimal U(1) magnetic charge
defines a closed loop in U(1)’.

In realistic unified gauge theories, spontaneous symmetry breakdown
typically occurs at two or more mass scales differing by many orders of
magnitude. To illustrate the effect of such a symmetry-breaking hierarchy
on magnetic monopoles, let us imagine that the G = SU(3) gauge symmetry
of our model breaks down in two stages, first to H1 = [SU(2) x U(1)]/Z2 
mass scale vl, then to H2 = U(1) at mass scale v2 ~ Vl,

G = SU(3) ~ H1 ~- [SU(2) x U(1)]/Z2 -~ H2 = 68.

The effect of the second stage of symmetry breakdown on the monopoles
generated by the first stage depends on which U(1) subgroup of Hi remains
unbroken at the second stage (53).

First, suppose that n2 is the U(1) subgroup generated 

Q2 = Q’ = diag(1,0,- 1). 69.

Since this is the same charge as that carried by the monopole associated
with the G ~ H1 breakdown at mass scale vl, the breakdown at the much
lower mass scale v2 has no significant effect on the monopole.

But if H2 is the U(1) subgroup generated 

Q2 = H = diag(½,½, - 1), 70.

the monopole is significantly affected, for the only monopole solutions now
have twice the U(1) magnetic charge allowed by the G --, i breakdown.

What would happen to the minimal G/H1 monopole if we varied the
parameters of the model so as smoothly to turn on the second symmetry-
breaking scale v27 This question is not entirely academic, because the H1
symmetry is expected to be restored at sufficiently high temperature,
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T ~ v2. As the temperature is lowered, a phase transition occurs at T ~ v2
in which H1 becomes spontaneously broken. We might be interested in
what happens to the minimal G/HI monopoles during this phase transition,
especially since a phase transition like this one may have occurred in the
very early universe.

A reasonable guess is that pairs of minimal G/H1 monopoles or
monopole-antimonopole pairs become connected by magnetic flux tubes,
and form composite objects with either twice the minimal U(1) magnetic
charge or zero magnetic charge. To verify this guess, we need a mathe-
matical criterion to determine when such flux tubes occur.

A magnetic flux tube in three spatial dimensions, a static solution to the
field equation with finite energy per unit length, may be regarded as a
topological soliton in two spatial dimensions with finite energy. The
topological classification of these solitons is very similar to the classifi-
cation of monopoles in Section 4.3 ; so similar that we need only sketch the
analysis.

In a gauge theory with gauge group G and unbroken group H, the finite-
energy two-dimensional field configurations define mappings from the
circle S1 at (two-dimensional) spatial infinity into the vacuum manifold
G/H, and are classified by the first homotopy group ~I(G/H). To facilitate
the calculation ofrq(G/H), we cut the circle open at q~ --- 0, and find a gauge
transformation t2(~)~G that rotates the order parameter O(q0 to 

¯ standard values ~o for all tp. The discontinuity of this gauge transformation
at ~0 = 0 is an element of H,

D(q~ = 0)f~- ~(¢p = 2~z) --- ~qo 71.

We thus obtain a group homomorphism from nI(G/H) into a group called
~o(H). The elements of ~Zo(H) are equivalence classes of elements of H,
defined such that f~, f~2 e H are in the same class if there is a continuous
path in H from f~ to flz- Group multiplication in H defines the group
structure in n0(H).

It is easy to see that the homomorphism :from rq(G/H) into r~o(H) has 
trivial kernel, if G is simply connected, and is onto, if G is connected. So we
have the isomorphism

~(G/H) = no(H), 72.

which holds if G is connected and simply connected.
To apply this result to the symmetry-breaking pattern (Equation 68),

with the Hz generator Q~ given by Equation 70, we note that the U(1) factor
of H~ is not affected by the second stage of sy:mmetry breakdown, so that the
flux tubes are classified by

~[SU(2)/Zz] = ~o(Z~) = 73.
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As we expected, there are Z2 flux tubes, to which the nonabelian SU(2)
magnetic flux becomes confined, generated by the spontaneous breakdown
of the SU(2) gauge symmetry. The thickness and energy per unit length 
the flux tubes are determined by the lower symmetry-breaking scale v2 ; the
thickness is of order (ev2)-1, and the energy per unit length is of order

The flux tubes link each G/H1 monopole with minimal H1 magnetic
charge to either another monopole or an antimonopole, since the
monopole and antimonopole carry the same Z2 charge. The bound pairs of
monopoles have the minimal H2 magnetic charge allowed by the Dirac
quantization condition.

Finally, suppose that the unbroken U(1) group 2 i s generated by

Q2 = T3 = diag(½, -½,0). 74.

In this case H2 is contained in SU(2) c 1 and the symmetry breakdown
H2 ---’ H1 can be represented by

n1 = SU(2) x U(1)

~ ~,. 75.
H2 = u(1) 1

The flux tubes associated with the breakdown of H1 are classified by

rq[U(1)] = 76.

These are Z flux tubes to which the U(1) magnetic flux becomes confined,
and therefore no heavy monopoles with mass of order v 1/e can survive
when vz turns on ; all heavy monopoles become bound to antimonopoles by
the flux tubes. Since rc2(G/Hz) = Z, there must still be stable, but light (mass
of order vz/e), monopoles associated with the symmetry breakdown
H1 ~ Hv

We see that magnetic monopoles generated at a large symmetry-
breaking mass scale may be affected by a small symmetry-breaking mass
scale in various ways. The monopoles may survive intact, may become
bound by flux tubes into monopole-antimonopole pairs, or may become
bound into both monopole-antimonopole pairs and clusters of n mono-
poles. And, of course, new monopoles might also be generated at the smaller
mass scale.

5.2 A Z2 Monopole

We encountered above a monopole carrying both a U(1) magnetic charge
and a nonabelian magnetic charge. Of course, it is also possible for a
monopole to carry only a nonabelian charge.

For example, consider a model with gauge group G = SU(3) and a scalar
field q~ transforming as the symmetric tensor representation of G. q~ can be
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written as a symmetric 3 x 3 matrix, which, under a gauge transformation
~(x), transforms according 

t])(x) -~ ~(x)~(x)~V(x). 77.

If tl) acquires the expectation value

(e)) = ~o = 78.

then G is spontaneously broken to H = SO(3). The monopoles of this
model are classified by

n2(G/H) = n1[SO(3)] = Z2. 79.

They are Z2 monopoles carrying SO(3) magnetic charges. The monopole
and antimonopole are indistinguishable.

It is interesting to examine the fate of these monopoles if there is a
symmetry-breaking hierarchy of the form (5;5)

G = SU(3) ~ nl = SO(3) --, z =U(1), 80.

where Hz = U(1) c SO(3) is generated 

Q = diag(½, -½, 0). 81.

There will, of course, be n:(HI/H2) monopoles generated by the second
stage of symmetry breakdown. These are light monopoles, with core radius
of brder (evz)- ~ and mJass of order vz/e, which define topologically
nofitrivial loops in H~ that can be contracted to a point in Hx.

But the light mono, P01e~ are not all the monopoles of this model;
z~2.(G/Hz) is larger than nz(HffHz), because there are toPOlogically non-
trivial loops in H2 that can)aot be contracted to a point in H~, but are
contractible in G. Thus, [here are monopoles with half the magnetic charge
of the minimal n~(HffH2) faonopole that are generated by the first stage of
symmetry breakdown. These are heavy monopoles with a core radius of
order (ev~)- ~ and a mass of order rife. They are just the Zz monopoles,
¯ .which have been converted into Z monopoles with the Dirac magnetic
charge by the physics of the second Stage of symmetry breakdown. If we
turn on vz smoothly, the Zz monopole, which is equivalent to its anti-
particle, must choose the sign of its U(1) magnetic charge at random (55).

The heavy monopole has two cores, and most of its mass resides on its
tiny inner core. But if two heavy monopoies are brought together, their
inner cores can annihilate, and only the outer cores need survive. So the
doubly charged light monopole can be regarded as a very tightly bound
composite state of two, singly charged, heavy monopoles.
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5.3 The SU(5) and SO(IO) Models

The monopoles of the realistic grand unified models based on the gauge
groups G = SU(5) and G = SO(10) have many features in common with 
simpler examples considered above.

The SU(5) model (4) is the simplest gauge theory uniting the SU(3)c 
group of the strong interactions with the I-SU(2) x U(1)]ow gauge group 
the electroweak interaction. This model undergoes symmetry breakdown
at two different mass scales,

G = SU(5)2, H~ = {SU(3)c x [SU(2) x U(1)]~w}/Z~

--* H2 = [SU(3)c x U(1)er,]/Z3. 82.

Here v2 ~ 250 GeV is the mass scale of the electroweak symmetry
breakdown, and v1 ~ 1015 GeV is the mass scale of unification.

The order parameter for the symmetry breakdown at mass scale vl is a
scalar field ¯ transforming as the adjoint representation of G, which
acquires the expectation value

(O) = O0 = vl dlag(~,~, 3’ --½, --½)" 83.

The stability group H of G is locally isomorphic to SU(3) x SU(2) x U(1),
where SU(3) acts on the three degenerate eigenvectors of @o/Vl with
eigenvalue ½, and SU(2) acts on the two degenerate eigenvectors with
eigenvalue -½. The unbroken U(1) is generated 

= dlag(~,~,~,-½,-½), 84." 1 1 1

and, since

exp (i2nQ) = diag [exp (i2~/3), exp (i2zt/3), exp (i2~t/3), - 85.

we see that this U(1) contains the center of SU(3) × SU(2), so that 
unbroken group is actually H1 = [SU(3) x SU(2) x U(I)]/Z6.

Equation 85 ensures that any-object with trivial SU(3) triality and SU(2)
duality has integer U(1) charge, in units of e. Thus, there exists a magnetic
monopole in this model with the Dirac U(1) magnetic charge 0D = l/2e,
which also carries a Z3 color magnetic charge and a Z2 SU(2) magnetic
charge. In an appropriate gauge, we may regard the magnetic charge
carried by the monopole to be a U(1)’ charge generated 

Q’ = Q+Q,~,a~+Q~o~o~ = diag(0,0, 1,0, -1), 86.

where

aw,a~ = diag(0, 0, 0,½, -½), 87.
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is an SU(2) generator and

Qcolor= diag(-½, -7,7,1 2 0,0) 88.

is an SU(3) generator. Since Q’ has integer eigenvalues, a monopole with
U(I)’ magnetic charge 9 = go = 1/2e is consistent with the Dirac quantiz-
ation condition.

The electroweak symmetry breakdown at mass scale v2 leaves unbroken
the U(1)e~ subgroup of [SU(2) x U(l)]e,~ generated 

= = d~ag (7,7,7, 0, -- 1). 89.

Since exp (i2~tQom) is a nontrivial element of the center of SU(3)c, the 
broken subgroup is H2 = [SU(3) × U(1)]/Z:~, and the monopole with mini-
mal U(1)em magnetic charge still carries the U(1)’ charge generated by Q’.

The structure of the SU(5) monopole is not much affected by the
electroweak symmetry breakdown, because the magnetic charge carried by
the monopole is not changed by this break:down. There are no W and Z
fields excited inside an electroweak core with a radius of order (eve)- ~

~ Mff~, at least in the classical approximation. The true core of the
monopole has a radius of order (evt) -~ ~ 10-28 cm and the mass of the
monopole is of order (vile) I01~ GeV.

That the electroweak SU(2) x U(1) gauge symmetry is restored within 
distance M~,1 of the center of the monopole has some important
consequences, though. For one thing, two monopoles with a separation
much less than Mff~ may orient their magnetic charges in orthogonal
directions in SU(3) x SU(2) x U(1), and reduce their Coulomb repulsion 
zero. For an appropriate choice of parameters, it is then possible for the
attractive force between the monopoles generated by scalar exchange to
cause a stable two-monopole bound state to form, with twice the minimal
U(1)~m magnetic charge (56). Also the quantum mechanical fluctuations 
the W and Z fields within a distance M~~ of the center of the monopole
influence the scattering of fermions by monopoles, as we see in Section 7.

The SO(10) model (57) is the next simplest realistic grand unified theory,
after the SU(5) model. There are several possible choices for the symmetry-
breaking hierarchy of the SO(10) model, and the properties of its mono-
poles depend on this choice. Rather than enumerate all ~he possibilities,
let us focus on one particularly interesting case.

The group SO(10) is not simply connected, but has the simply connected
covering group Spin(!0). The center of Spin(10) is Z2, and its 
dimensional spinor representation is a double-valued representation of
SO(10) = Spin(10)/Z2. All representations of Spin(10) can be constructed
from direct products of 16s.

Let us suppose that the order parameter for the first stage of symmetry
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breakdown in the SO(10) model is a scalar field ¯ that transforms as the 54-
dimensional representation of SO(10): ̄  can be written as a traceless
symmetric 10 × 10 matrix transforming according to

(I)(x) --* f~(x)*(x)fU(3c), 90.

where f~(x)e SO(10). If (I) acquires the expectation 

((I)) o = va diag(2,2,2,2,2,2, -3, -3, -3, -3), 91.

then the unbroken subgroup H is locally isomorphic to SO(6) x SO(4).
This group is, in turn, locally isomorphic to the direct product of SU(4), the
covering group of SO(6), and SU(2) x SU(2), the covering group of 

To determine the global structure of the unbroken group, we check for
nontrivial elements of SU(4) × SU(2) × SU(2) that act trivially in Spin(10).
Since the fundamental spinor representation of Spin(10) transforms under
SU(4) × SU(2) × SU(2)as

16 --, (4, 1, 2) + (74, 2, 1), 92.

we see that the element (- 94, - "flz, - "~a) of SU(4) × SU(2) × SU(2) 
act trivially on the spinor. Thus, the symmetry-breaking pattern is (58)

G = Spin(10)--+ Ha = [SU(4) x SU(2) × SU(2)]/Z2. 93.

The monopoles arising from this symmetry breakdown are Za mono-
poles carrying SU(4) and SU(2) × SU(2) magnetic charges, classified 
rta(G/na) = rq(H,) 2.

NOW suppose that, at a lower mass scale vz, the symmetry breakdown

V2
Ha = [SU(4) × SU(2) × SU(2)]/Z2 --}/-/2

--- [SU(3) × SU(2) x U(1)]/Z6 94.

occurs. [The order parameter could be a scalar field transforming as the 16-
dimensional spinor representation of SO(10).] 2 i s exactly t he same as t he
unbroken gauge group of the SU(5) model, and the monopole with the
minimal U(1) magnetic charge in this SO(10) model also carries SU(3) 
SU(2) magnetic charges, just like the monopole of the SU(5) model.

But, as in the example of Section 5.2, the doubly charged monopole in
this model is lighter than the monopole with minimal charge (59). The
minimal monopole defines a loop in H2 that cannot be contracted to a point
in H1, but can be in G. So the core of this monopole has a radius of order
(eva) a, and its mass is of order (rife). The doubly charged monopole,
however, has no SU(2) magnetic charge, and it defines a loop in 2 that can
be contracted to a point in Ha. It arises from the breakdown of Ha to Ha,
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and has a core radius of order (eVE) 1 and a mass oforder (v2/e). Neither the
minimal monopole nor the doubly charged monopole is much affected by
the subsequent breakdown of H2 to Ha = [SU(3) × U(1)]/Z3.

In general, a grand unified theory with a complicated symmetry-
breaking hierarchy may possess several stable monopoles with widely
disparate masses, the monopole of minimal U(1)~m charge being the
heaviest. The SO(10) model described here is the simplest realistic example
illustrating this possibility.

5.4 Monopoles and Strings

In Section 5.1, we saw that there are model gauge theories in which
magnetic flux becomes confined to topologically stable tubes, or "strings."
In some models, the strings can end on magnetic monopoles, and cause
monopoles and antimonopoles to form bound pairs connected by strings.
In other models, the strings cannot end ; the.y become either infinite open
strings or closed loops of string.

Our last example is a model containing both monopoles and strings (60).
Although the strings in this model cannot end on monopoles, they have
interesting long-range interactions with monopoles. A monopole that
winds once around a string becomes an antimonopole! The model has
gauge group G -- SO(3) and a scalar order p~trameter ̄ transforming as the
5-dimensional representation of G: ¯ c~n be written as a traceless
symmetric 3 x 3 matrix transforming as

,I}(x) ~ f~(x)@(x)f~V(x), 95.

where f~(x)¯ SO(3). If do acquires the expectation value

(do) = doo = v diag(1, 1, --2), 96.

then the unbroken subgroup H is locally isomorphic to the SO(2) subgroup
of rotations about the "z-axis," generated by

Q= i 0 0 . 97.
0 0 0

But H actually has a disconnected component, because

doo = f~odoof~a’o, 98.

where

f~0 = diag (1, -- 1, -- 1) 99.

is a 180° rotation about the "x-axis." The symmetry-breaking pattern is

G = SU(~)--, H = WO) Z~,
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and the vacuum manifold G/H is topologically equivalent to a two-
dimensional sphere with antipodal points identified. [The unbroken
subgroup of the SO(10) model of Section 5.3 has a similar 2 f actor, which
we did not bother to point out there (61).-1

Since rc2(G/H) = Z, this model has magnetic monopoles, just like the
monopoles of the SO(3) gauge theory discussed in Section 3. But these
monopoles have a peculiar new feature. Since a 180° rotation about the
x-axis changes the sense of a rotation about the z-axis, we have

noQ~ = -Q. 100.
Therefore, the sign of an electric or magnetic charge can be changed by a
gauge transformation in H, and there is no gauge-invariant way to
distinguish a monopole from an .antimonopole. A "hedgehog" is not
different from an "antihedgehog," because the order parameter is a
"headless" vector in three-dimensional space, identified with the vector
pointing in the opposite direction. We can, however, distinguish a pair of
monopoles (or antimonopoles) from a monopole-antimonopole pair; the
ambiguity afflicts only the sign of total charge, not the relative charge of two
objects (19).

This model also contains topologically stable strings, because ~t(G/H)
= r~0(H) = Z2. If we perform a gauge transformation f~(~0) that rotates (I) 
d)o at all points on the circle at spatial infinity enclosing a string, as
described in Section 5.1, then this gauge transformation must have a
discontinuity, at some value of ¢p, by an element of H in the connected
component of f~o. The two-dimensional cross section of a string is indicated
in Figure 5, where the order parameter is represented by an arrow, with the
understanding that arrows pointing in opposite directions represent the
same value of the order parameter.

According to Equation 100, the magnetic charge of a monopole changes
sign when it crosses the discontinuity in ~)(¢p). The location of the dis-
continuity is of course gauge dependent. But any monopole trajectory that
winds once around the string must cross the discontinuity an odd number

Figure 5 Cross section of a string.
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Figure 6 Cross section of a magnetically charged loop of string.

of times. We thus obtain the gauge-invariant result that a monopole
that winds once around the string becomes, an antimonopole (60).

There is a local criterion for distinguishing between a pair of monopoles
(or antimonopoles) and a monopole-antimonopole pair; we can bring the
two objects together and see whether they will annihilate or not. But this
criterion is not globally well defined if strings are present. Whether they
annihilate or not depends on how many times the monopoles wind around
the strings before they are brought together.

Magnetic charge is conserved, so the magnetic charge lost by a monopole
that winds around a string cannot disappear ; it must be transferred to the
string. If the string is open, the magnetic charge is transmitted to infinity
along the string. But if the string is a closed loop, a finite magnetic charge
density remains on the string, after it interacts with the monopole.

A cross section of a magnetically charged loop of string is sketched in
Figure 6 ; the order parameter on a large sphere surrounding this loop is in a
hedgehog configuration. The loop is a peculiar highly excited monopole,
whose core has been distorted into a ring of radius R and thickness (ev)- 
Its energy is of order vZR, plus a magnetic excitation energy of order 1leER.
The string tension of the loop causes it to oscillate with a period of order R.

The electric charge of a particle that winds around a string must also
change sign, so a loop of string must be capable of supporting electric
charge excitations, as well as magnetic charge excitations. The electric
charge excitations of a string loop arise in much the same way as the dyonic
excitations of a monopole, which are the subject of Section 6.

6. DYONS

6.1 Semiclassical Quantization

In Section 3, we constructed the time-independent monopole solution to
the classical field equations in an SU(2) gauge theory. Now we consider the
semiclassical quantization of this soliton.

The semiclassical expansion is an expansion in h, where h-~ is a
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parameter multiplying the whole action. By rescaling the fields, we can
write the Lagrangian (Equation 17) 

l I__ ~ F~vFuva + l a a
~=~ ~ke /

where F,~ and DuO no longer depend on the gauge coupling e. We thus see
that the semiclassical expansion is an expansion in e~ with Mw and 2/e~

fixed. In the classical limit h ~ 0, the size of the monopole remains fixed
while its mass diverges like h ~

Semiclassical quantization is carried out (in the gauge A0 = 0), 
expanding the Hamiltonian about the stable time-independent monopole
solution. In order e, the monopole possesses a spectrum of positive-
frequency vibrational excitations, which can be interpreted as meson states
in the vicinity of the monopole.

Expanding about the classical solution, we also discover zero-frequency
modes; these are associated with unbroken exact symmetries of the theory
that act nontrivially on the solution. The time-independent monopole
solutions form a degenerate set, and the zero-frequency modes are
i~finitesimal displacements in the manifold of degenerate solutions.

For example, the monopole solution is not translation-invariant;
therefore, it has translational zero modes. The translational modes are
easily quantized. To obtain an eigenstate of the Hamiltonian, we construct
states that transform as irreducible unitary representations of the trans-
lation group; that is, plane wave states labeled by a momentum p. For fixed
p, the energy of a monopole plane wave state is O(ez) in the semiclassical
expansion, because the monopole mass m is O(1/e~):

E~ = ~pZ ~ m+ p~/2m+ .... m+O(eZ). 102.

If the classical monopole solution were not rotationally invariant, it
would have a moment of inertia of order i/e z, and rotational excitations
with energy of order ez. But, because the monopole solution is rotationally
invariant, there are no such rotational excitations.

A soliton can have zero-frequency modes associated with internal
symmetries as well as space-time symmetries. In Nct, the monopole
solution is not invariant under a global U(1).~ charge rotation, because the
charged fields W ~ are excited in the monopole core. (Although the physical
states in A0 = 0 gauge are required to be invariant under time-independent
local gauge transformations with compact support, they need not be
invariant under global gauge transformations.) To quantize the ~harge
rotation degree of freedom, we diagonalize the Hamiltonian by construct-
ing irreducible representations of U(1),~; that is, eigenstates of the electric
charge Q.

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt

. S
ci

. 1
98

4.
34

:4
61

-5
30

. D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 B
ro

ok
ha

ve
n 

N
at

io
na

l L
ab

or
at

or
y 

on
 0

9/
14

/0
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.annualreviews.org/aronline


500 PRESKILL

Since U(1)o,~ is compact, exp (i2rtQ) = 1, the eigenvalues of Q are integers.
[Q is the electric charge in units of e. Half-odd-integer charge cannot occur
because the monopole is invariant under the center Z2 of SU(2).] Thus, the
quantum-mechanical excitations of the fundamental monopole include
dyons, particles that carry both magnetic and electric charge. The dy0ns
have arisen automatically, from the semiclassical quantization of the global
charge rotation degree of freedom of the monopole (62).

To determine the energies of the dyon states, we must compute the
"moment of inertia" I of the monopole associated with a global charge
rotation. The kinetic energy of a monopole undergoing a time-dependent
charge rotation g~(t) = exp [i~(t)] has the 

L = ~e2 I92, 103.

where I is of order M~v~, or of order one in the semiclassical expansion. [The
explicit computation of I involves some technical subtleties, as explained in
(63-65).] The electric charge operator, the generator of a charge rotation, 
the angular momentum conjugate to O,

OL
Q = ~-ff = ~-~ 1~ 104.

and the Hamiltonian may be written as

e2~2
~o = __ 105.

21

The dyon excitations are split from the monopole ground state by an
amount that is of order the electrostatic energy of a charge eQ localized on
the monopole core, where Q is an integer.

The monopoles that occur in more complicated models, like those
considered in Section 5, also have dyon excitations. One’s naive expec-
tation, based on the above discussion, is that these dyon states will
transform as irreducible representations of the unbroken gauge group. In a
realistic grand unified theory, with unbroken group SU(3)c x U(1)em, 
then expects the dyons to form color multiplets (66).

But we have already seen that this expectation is wrong. In Section 4.5 we
found that global color rotations of a monopole that act nontrivially on its
long-range field actually cannot be implemented. Therefore, the dyon
excitations obtained by semiclassical quantization of a monopole with a
color magnetic field need only have definite values of color hypercharge, the
SU(3)~ charge that commutes with the magnetic charge. They do not form
complete color multiplets (64, 67).

The dyon excitations associated with color rotations of the monopole
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that act nontrivially on its long-range magnetic field fail to appear because
they cannot be supported by the monopole core. These excitations are
carried out to large distances by the nonabelian magnetic field, and are lost
in the gluon continuum. They do appear explicitly, however, in the excita-
tion spectrum of a widely separated monopole-antimonopo!e pair, with
energy splittings inversely proportional to the separation of the pair (65).

6.2 The Anomalous Dyon Charge

In Section 2 we noted that the Dirac quantization condition permits dyons
to have an anomalous electric charge characterized by a CP-violating
angular parameter 0. We have seen that the semiclassical quantization
procedure generates dyons with integer electric charge, in a CP-conserving
theory. One wonders whether it is possible to introduce CP violation such
that the dyons acquire anomalous charges.

In fact, it is possible (68). Let us consider adding to the Lagrange density
of electrodynamics the CP-violating term

~ = 0e2 E" B 106.4~2 ’

where ~ is a free parameter. In the absence of magnetic monopoles, this term
is a total divergence, and has no physical consequences. But if a magnetic
monopole is present, B is not the curl ofa nonsingular vector potential, and
this term has significant consequences.

Let us consider the effect of Equation 106 on the electric charge of a point
monopole fixed at the origin (68, 69). In the o =0 gauge, the extra te rm
modifies the momentum conjugate to Ai, and therefore also modifies the
generator of an infinitesimal gauge transformation. In this gauge, physical
states are invariant under finite time-independent gauge transformations
that act trivially at spatial infinity. Let exp(i2nQ^) be the operator that
implements the gauge transformation

ft(r) = exp [i2~zA(r)], 107.

where

A(r = 0) = 

A(Irl = ~)= 108.

Then, acting on physical states, we must have

1
f 3 OL = .d r~A~6A i _f 3 [" "9e2

n

--~ d3rmV"
e2
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where n is an integer, and the last equality has been obtained from an
integration by parts. Since Equation 109 is satisfied by any A(r) consistent
with Equations 108, the volume integral va~iishes and we obtain

(2 = n- 2-~M, 110.

where Q is the electric charge of the monopole in units of e, and M is the
magnetic charge in units of 9D = 1/2e. We have succeeded in reproducing
Equation 16; now, through Equation 106, we have a dynamical interpre-
tation of &

Since the charge spectrum (Equation 110)is unchanged when O increases
by 2r~, one is tempted to interpret ~ as an angular variable, and claim that
the dyons parametrized by (n, 0) and (n + 1, ~ + 2n), which have the 
charge, are actually the same object. It is easy to see that this interpretation
is correct (67, 68). Quantization of the charge rotation degree of freedom 
the monopole in a theory with the term in Equation 106 is evidently
equivalent to quantization in a theory without such a term, but subject to
the condition

exp (i2~ZQA) = exp (i9), 111.

where exp (i2r~Qh) = exp (i2~zQ) implemgnts a gauge transformation satisfy-
ing Equation 108. So we can think ofexp (iO) as an arbitrary phase by which
physical states are multiplied when acted on. by a "large" gauge transform-
ation with A(Ir[ = c~) = 1. Obviously, 0 is an angle.

An angle 9 can be associated with any gauge group ; the dyon excitations
of nonabelian monopoles, as well as abelian monopoles, may carry
anomalous electric charges (67, 70). This ob.servation seems paradoxical 
first, because we know that the nontrivial commutation relations satisfied
by the generators of a nonabelian gauge group require the eigenvalues of
the generators to be quantized. But we have already seen how this paradox
is resolved. Global gauge transformations of a nonabelian monopole
cannot be defined ; therefore, the d’yon excitations need not form complete
representations of the gauge group, and the peculiar values of the electric
charge are allowed (67).

The discovery of the anomalous electric charge of the dyon has led to
deep insights into the interactions of dyons and fermions, as discussed in
Section 7.

6.3 Composite Dyons

The dyons we have considered so far are quantum mechanical excitations of
a fundamental monopole. Another type of dyon is a composite state of a
magnetic monopole and an electrically charged particle. A composite dyon
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has a peculiar property--it can carry half-odd-integral orbital angular
momentum.

To understand this phenomenon, we consider a monopole (magnetic
charge g) fixed at the origin interacting with a charged particle (electric charge
e), which moves in the x-y plane. Let us imagine that the magnetic charge
of the monopole turns on gradually (71). Then the z-component of the
orbital angular momentum of the charged particle changes, according to
Faraday’s law, by

AL, = - (e/2n)A~. 112.

Here A~z is the change in the magnetic flux through a surface bounded by a
circular loop in the x-y plane, centered on the monopole. But we may
choose the surface bounded by the loop to pass either above or below the
monopole, and the fluxes through the two surfaces differ by 4n9 (not
counting, of course, the flux carried by the Dirac string).

Since the choice of a surface bounding the loop is arbitrary, we must
demand that the spectrum of Lz levels not depend on the choice. The
spacings between Lz levels are integers; therefore, the ambiguity in Lz is
undetectable if it is an integer ; that is, if

n = (e/2n) (4rig) 2eg. 113.

In yet another way, we have found that the quantum mechanics of a
charged particle interacting with a magnetic monopole is consistent only if
the Dirac quantization condition is satisfied.

We have also found that, if the monopole carries the Dirac magnetic
charge (n = 1), then the L~ values are shifted up or down by halfa unit. The
magnetic flux through a surface bounded by a loop in the x-y plane is half
the total flux emanating from the monopole. The orbital angular momen-
tum of the charged particle is half-odd-integral. [-Another way to reach this
conclusion is to note that the electromagnetic field of the monopole and
charged particle has an angular momentum of magnitude eg = ½ (21).’]

We conclude that the composite of an integer-spin monopole and an
integer-spin charged particle can be a dyon with half-odd-integer spin (72).
According to the usual connection between spin and statistics, a composite
of two bosons can be a fermion!

Does the usual spin-statistics connection really hold for these objects?
One might expect that the interchange of two identical composite dyons
could be accomplished by merely interchanging their constituents.
However, the interchange of the two dyons should in fact be performed by
transporting each dyon covariantly in the gauge potential of the other (71,
73); this procedure corresponds to interchanging the electromagnetic fields
of the dyons, as well as their constituents.
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It is trivial to perform the covariant interchange of the dyons, if we first
choose a gauge in which the vector potential vanishes. The velocity-
dependent interaction of two dyons, each with magnetic charge 0 and
electric charge e, can obviously be represented by

-- ev" [A(r) - A(- r)], 114.

where r is the separation of the dyons, v the relative velocity, and A the
monopole vector potential

A(r)’dr = 9(1-cos 0)d~o. 115.

The first term in the brackets in Equation 114. is due to the interaction of the
electric charge of dyon 1 and the magnetic charge of dyon 2; the second
term is due to the interaction of the electric charge of dyon 2 with the
magnetic charge of dyon 1. Now, since

A~(O, q~) - A~(n - ~, ~o + z) = 20 = ~e (~f~)!f~- 116.

where

1~ = exp (i2e0cp), 117.

the gauge interaction, Equation 114, between the dyons can be removed by
performing the gauge transformation

q’(r) --, f~(r)q’(r), 118.

on the two-dyon wave function ~.
In this gauge, the dyons may be interchanged naively, by replacing r by

-r. But the gauge transformation shown in Equation 118 has changed the
symmetry of the wave function; when the dyons are interchanged, ~0 -~ ~p
+ .n, f2 changes by the phase

fl ~ exp (i2neg)fl. 119.

This phase is precisely what is needed to restore the usual connection
between spin and statistics (73). It is (- at, where l istheorbital angular
momentum of the composite dyon. It really is possible to obtain a fermion
as a composite of two bosons, if 2eg is odd.

6.4 Dyons in Quantum Chromodynamies

In quantum chromodynamics, as in any gauge theory, a term of the form

Oe2 E"" B" 120.&v,~ = 8nz
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MAGNETIC MONOPOLES 305

can occur in the Lagrange density, where ~ is an arbitrary parameter. In the
real world, ~ is known to be very close to zero, but it is nonetheless
interesting to ask how the strong interactions would behave for different
values of ~. For one thing, by studying the ,9-dependence of the theory, we
can gain a deeper understanding of quark confinement. For another, there
may exist other "super-strong" interactions, not yet known, for which ~ is
not close to zero.

The discovery of the anomalous dyon charge, Q -- -S/2~, has led to
some interesting insights into the ~-dependence of quark confinement in
quantum chromodynamics (70).

What do magnetic monopoles and dyons have to do with quark
confinement? It should be possible to understand quark confinement by
considering the dynamics of pure Yang-Mills theory, without quarks. If, in
this theory, it is dynamically favored for color-electric flux to collapse to a
tube with a characteristic width of order the hadronic size, then confinment
is explained. A distantly separated quark-antiquark pair would become
connected by a color-electric flux tube carrying constant energy per unit
length, and the potential energy of the pair would rise linearly with the
separation.

A similar phenomenon occurs in a superconductor. Magnetic flux is
expelled from a superconductor (the Meissner effect), and hence collapses 
a flux tube. As a result, magnetic monopoles in a superconductor would be
"confined."

The Meissner effect arises because of the condensation of electrically
charged Cooper pairs in the ground state of a superconductor. It is natural
to suggest that quark confinement arises in quantum chromodynamics
because of the condensation of color-magnetic monopoles in the vacuum
state of Yang-Mills theory (70, 74). The monopole condensate would cause
the Yang-Mills vacuum to expel color-electric flux and screen color-
magnetic flux.

But what are the monopoles of Yang-Mills theory? We can understand
their origin by choosing an appropriate gauge (70). In SU(N) Yang-Mills
theory, a gauge transformation can be performed that diagonalizes, for
example, the gauge field F12 at each point of space-time. This gauge
condition generically specifies the gauge transformation up to a diagonal
element of SU(N), and hence reduces the theory to an abelian U(1)2v- 1
gauge theory. However, the ambiguity in the gauge transformation is a
nondiagonal element of SU(N) at the isolated points in three-dimensional
space where two eigenvalues of F12 coincide. At these isolated points, the
embedding of U(1)N- l in SU(N) is ill defined, and magnetic monopoles
appear, carrying U(1)N- 1 magnetic charges. It is the condensation of these
monopoles that presumably accounts for quark confinement.
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0 ® 0 0
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¯ gluon
x quark
0 dyons
® dyon-quark

composite

Electric (Q) and magnetic (M) charges in an SU(2) gauge theory with St 

For simplicity, consider an SU(2) gauge theory, which has only one
diagonal U(1) charge and hence only one type of monopole. If 9 = 0, these
monopoles carry no U(1) electric charge. Suclh monopoles condense, and, 
a result, U(1) electric charge is confined, while U(1) magnetic charge 
screened.

But, as 8 varies from 0 to 2n, the monopole acquires an electric charge
Q = -0/2n. When 8 reaches 2n, there is again an electrically neutral
monopole that condenses (Figure 3). Evidently, the object that condenses
must change discontinuously for at least one value of O.

In particular, for 8 = n, there is a monopole with twice the minimal
magnetic charge (a bound state of two dyons) that is electrically neutral, and
it is plausible that this object condenses, in.stead of the fundamental dyon
(Figure 7). Thus, both elementary dyons and elementary quarks, which
have electric charge Q = +_½ in SU(2), are confined, but electrically neutral
composites of quarks and dyons exist, which are not confined.

On the basis of this picture, one is tempted to conjecture that quarks are
unconfined in SU(2) gauge theory at ~ = :~c. In fact, the liberated quark-
dyon composites have orbital angular moraentum 1/2, and so are bosons
rather than fermions, as discussed in Section 6.3.

Similar phenomena can occur for other values of N. The discovery of the
anomalous electric charge of the dyon has led us to expect a highly
nontrivial dependence on the parameter ~ in nonabelian gauge theories.

7. MONOPOLES AND FERMIONS

7.1 Fractional Fermion Number on Monopoles

Surprising and qualitatively new phenomena arise when we consider the
quantum mechanics of electrically charged fermions interacting with
magnetic monopoles.
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A first indication of the subtlety of monopole-fermion interactions is
obtained if we reconsider the derivation of the dyon charge spectrum
(Section 6.2), including the effect of an electron coupled to the electro-
magnetic field. The derivation appears to go through as before, so we
conclude that the allowed electric charges of the dyon are

Q = n-(9/2n)M, 121.

where n is an integer.
But it is known that, because of the axial anomaly (75), it is possible 

rotate 9, the coefficient of the CP-violating E- B term in the Lagrangian, to
zero, at the cost of introducing a CP-violating phase into the electron mass
term (76), ~

~m = -- metO~LOr~ + h.c. 122.

Therefore, it should be possible to understand the origin of the anomalous
dyon charge by carefully inspecting the electron vacuum polarization cloud
surrounding the monopole.

Indeed, this is possible. When the Dirac equation is solved for a fermion
with a complex mass in the field of a point monopole, it is found that the
Dirac sea is distorted for nonzero 9, so that the ground state of the
monopole-fermion system carries fermion number (/~/2n)M and electric
charge Q = -(9/2n)M (77). Actually, solving the Dirac equation for 
electron in the field of a point monopole involves a further subtlety; it is
necessary to impose a boundary condition on the electron wave function at
the pole (78, 79). The above remark really holds only if the boundary
condition is chosen to be CP conserving, so that the phase 9 is the only
source of CP violation in the problem. Both singular and nonsingular
monopoles have the ability to carry a fractional fermion number, in a CP-
nonconserving theory (80, 81).

If the mass rn of the electron vanishes, its phase is not well defined, and
the parameter 9 must become unobservable. The electric charge of the
monopole ground state, which is - (9/2n)M for any nonzero m, must vanish
discontinuously in the limit m ~ 0. This behavior is not so puzzling once we
realize that the anomalous charge is carried by the electron vacuum

polarization cloud of the monopole. The electric charge radius of the
monopole is of order m-l, the electron Compton wavelength, so any
observer a finite distance from the monopole center thinks that the electric
charge disappears as m ~ 0 (15, 16, 69).

In fact, all the dyonic excitations of the monopo!e have an electric charge
radius of order m- 1, since it is very much preferred energetically to deposit
the charge in the electron cloud, instead of on the very tiny monopole core.
These excitations are split from the dyon ground state by an energy of order
m, and can be regarded as (unstable) dyon-electron c6mposites.
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7.2 Monopole-Fermion Scattering

The interactions of magnetic monopoles and fermions have another, even
more spectacular property. When a monopole and charged fermion collide
at low energy, compared to the inverse size Mx of the monopole core, the
outcome is strongly dependent on the structure of the core (15, 16). 
particular, in a typical grand unified theory there are heavy gauge bosons
with masses of order Mx and couplings that violate baryon-number
conservation; in such a theory the cross section for baryon-number-
changing scattering of a fermion by a monopole at low energy is large, and
independent of Mx.

This result seems to violate a cherished principle of quantum field theory,
the decouplingprinciple (82), which asserts that the effects of the very short-
distance physics must be suppressed at low energy by a power of the short-
distance scale. In this respect, monopole-fermion scattering appears to be a
unique phenomenon.

To begin to understand the peculiar features of monopole-fermion
scattering, recall that if a particle with electric: charge e moves in the field of
a point monopole with magnetic charge y, the electromagnetic field carries

~angular momentum

,lena "= -- e91~ 123.

where f is the unit vector pointing toward the charged particle from the
monopole (21, 83). If the charged particle were to pass through the
monopole, this contribution to the angular momentum would change
discontinuously. Therefore, conservation of angular momentum forbids the
particle to pass through the pole, unless its; charge or intrinsic spin can
change discontinuously as it does so.

The above remark has a quantum mechanical counterpart, as is seen by
solving the Dirac equation for a massless electron in the field of an abelian
point monopole with e9 = ½. The wave function ~ of the electron is defined
(42), as described in Section 4.5, by specifying smooth functions Ou and 
on the upper and lower hemispheres surrounding the monopole, which
satisfy a matching condition at the equator of the form shown in Equation
56. Because there is a conserved angular momentum (84)

J = r x (-iV--eA)-½f+½~ 124.

in this problem, the eigenstates of the Hamiltonian can be chosen to be
eigenstates of j2 and J~. For the states with J = 0, the Dirac equation
reduces to the radial equation

i~s dT- x(x) = Ex(r), 125.
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where
~k(r, O, 9, t) 1 z(r)qo(O’ 9)exp(-- iEt)

126.
r

and q0 is the J = 0 "monopole harmonic" (42, 78).
The solutions to Equation 125 have an odd property; the positive-

helicity (vs = - 1) solution is purely an outgoing wave, and the negative-
helicity (V5 = + 1) solution is purely an incoming wave. (For a positr.on,
the helicities of the solutions are reversed.) Both solutions are singular ht the
origin, the location of the pole, and t.he Dirac equati6n provides no criterion
for matching up the incoming and outgoing solutions. The Hamiltonian
defined by the Dirac equation is therefore not s~lf-adjoint; probability is
not conserved unless the Hamiltonian is. supplemented by a boundary
condition at the origin (the location of the pole) relating the incoming and
outgoing waves (79).

This trouble can be traced back to the unusual term J*m = --½7 in the
expression for the angular momentum. An incoming (outgoing) electron
must have negative (positive) helicity to be in a state with J = J,m + a = 
For a positron, Jcm has the opposite sign, and the helieities are reversed.

The boundary condition at the origin determines the fate of a left-handed
electron, which scatters from a monopole in the J = 0 partial wave. But
there are only two options ; it becomes either a right-handed electron or a
left-handed positron, because these are the only available outgoing modes
with J = 0. The boundary condition must therefore either violate chirality
(which is otherwise a good symmetry of the Hamiltonian) or require the
monopole to absorb ’electric charge. If the charge-conserving boundary
condition is chosen, then the chirality-changing J = 0 cross section will
saturate the unitarity limit (15, 16).

The need for a boundary condition to determine the final state of an
electron scattering from a point monopole is the crucial feature of
monopole-fermion scattering that results in the violation of the decoupling
principle. The decoupling principle leads one to expect that the amplitude
for monopole-fermion scattering at energies much less than the inverse size
of the monopole core does not depend on the structure of the core, except
for power corrections that vanish as the size of the core goes to zero. Up to
power corrections, the amplitude should be calculable in a low-energy
"effective theory" in which the core is regarded as pointlike and its
properties need not be specified. This expectation fails because monopole-
fermion scattering is inherently ambiguous when the monopole is pointlike.
Information about the core of the monopole survives in the low-energy
effective theory as a boundary condition needed to specify the outcome of a
scattering event ; a low-energy fermion with J = 0 can penetrate to the core
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of the monopole, and be strongly influenced by its structure. In particular,
the boundary condition may violate a symmetry (like baryon number) that
would otherwise be a good symmetry of the ]iow-energy effective ttieory.

We now see that the analysis of the scattering of a low-energy fermion by
a nonsingular monopole with nonvanishing core size can be divided into
two parts. First, we decide what boundary conditions must be imposed as
the limit of zero core size is taken. Then the interaction of a point monopole
with fermions satisfying the appropriate boundary conditions is studied.
The second step is highly nontrivial. Fermion pair creation effects, which
are responsible for smearing out the electric charge of the dyonic excitations
of the monopole over a region with radius of order the fermion Compton
wavelength, must be taken into account as flJlly as possible. But Rubakov
(15) and Callan (16) suggested that, since only J = 0 fermions cfin penetrate
to the core of the monopole, the problem cart be reasonably approximated
by an effective (1 + 1)-dimensional quantum field theory describing the
./= 0 partial wave, in which the spatial coordinate is the radial coordinate
r. The qualitative features of this (1 + 1)-dimensional theory are most easily
glimpsed if it is converted into an equivalent "bosonized" theory (85) 
which the fermions are represented by solitons. This soliton picture of
monopole-fermion scattering is especially convenient when we try to
understand the effects of fermion masses.

Returning to the problem of finding the appropriate boundary con-
ditions satisfied by the fermions, let us consider, for Concreteness, the case of
the SU(5) grand unified model with a single generation offermions. The
magnetic charge of the su(5) monopole is a linear combination of ordinary
magnetic charge and color magnetic charge. At a distance from the
monopole center much less than the characteristic hadronic size 10-13 cm
and much greater than the radius o~ the core, the only fermions that interact
with the monopole are those carrying Q’, the corresponding combination of
electric charge and color electric charge, giw~n, in an appropriate gauge, by
Equation 86. The right-handed quarks and leptons carrying nonzero Q’ are

0’ = 4" 1 : eI~3RUlRUzR (incoming)

Q’ = - 1" d3rteff 02RO 1R (outgoing),
127.

where e denotes the electron, u and d denote up and down quarks, and 1, 2, 3
are color indices. The behavior of these fermions in the field of the SU(5)
monopole is identical to the behavior of an ,electron or positron in the field
of an ordinary Dirac monopole. If fermion masses are ignored, then the
right-handed (left-handed) fermions with Q’ = + 1 in the J = 0 partial wave
are incoming (outgoing) only ; for Q’ = - 1 the helicities are reversed. The
new feature is that there are now four Dirac fermions interacting with the
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MAGNETIC MONOPOLES 511

monopole, and the boundary condition at the origin causes these fermions
to mix in a manner determined by the structure of the core of the monopole.

One can attempt to determine the boundary Condition by solving the
Dirac equation in the field of the nonsingular SU(5) monopole with finite
core radius (16, 80, 86). The result is that the helicity of the incoming fermion
is preserved ; incoming and outgoing states are matched up as in Equations
127. We see that two units of Q’ are transferred to the monopole, exciting its
dyon degree of freedom.

But if we now investigate the consequences of this boundary condition,
taking proper account of pair creation effects, we realize that the picture in
which the incoming fermion falls to the core and deposits charge there,
suggested by the solution to the Dirac equation, is not very accurate. An
enormous Coulomb barrier prevents charge from being deposited on the
core. It is energetically favored for the charge to be spread out over a region
with a radius of order a fermion Compton wavelength. As a result, our
original procedure for finding the correct boundary condition is called into
question. It seems that a more appropriate boundary condition is one
forbidding charge to accumulate at the origin (87).

Fortunately and remarkably, in the case of the SU(5) monopole we can
obtain quite nontrivial information about the scattering process by merely
demanding that none of the charges coupling to massless gauge bosons
accumulate on the core (88). This constraint is especially powerful because
W and Z bosons must be regarded as effectively massless at distances from
the center of the monopole much less than M~ 1. Since left-handed and
right-handed fermions with the same electric charge have different values of
the charge (T3)woak, which couples to the 3 boson, simple chirality-
violating processes such as

e~ + M ~ e~ + M 128.

are forbidden for massless fermions. If, for example, two d = 0 u quarks
scatter from the monopole, there is only one possible final state of two J = 0
fermions ; the allowed process is

UlI~U2R + M --~ d3Le~- +M. 129.

The most general final fermion state consistent with conservation of all
gauged charges is ~sLe + accompanied by an indefinite number of the pairs
~,uL, dLdR, and e~e~-, which carryno favor quantum numbers. So baryon-
number nonconservation is forced on us, if we ignore the masses of the
fermions, and the cross section for baryon-number-changing scattering is
not suppressed by the small size of the monopole core.

Presumably, then, SU(5) monopoles are able to catalyze the decay of 
nucleon at a characteristic strong-interaction rate (15, 16). The only
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property of the SU(5) model that we needed to invoke was the existence of 
monopole that couples to the charge Q’, at distances from the monopole
center less than M~- 1, where the weak-interaction symmetries are effectively
restored. In any realistic model containing an [SU(3) × SU(2) × U(1)]/Z6
monopole (see Section 5.3) and light fermions with the standard charge
assignments, the amplitude for the process in Equation 129 will be
unsuppressed by the small size of the monopole core.

This process (Equation 129), with two fermions in the initial state, must
occur in two steps. It is natural to inquire about the intermediate state
produced when ulR scatters from the monopole. What one finds (89-91) 
rather subtle and bizarre; the intermediate state consists of four "semitons,"
each with fermion number ½. The reaction

u.IR + M ~ ½(UlL~2Ra3Le~) + 130.

changes baryon number and lepton number by -½ unit.
2"he semitons are destabilized by fermion mass terms or the effects of the

strong color interaction. At a distance from the monopole center where
these effects become important, the intermediate state in Equation 130
evolves into a final state with baryon and lepton number differing by an
integer (possibly zero) from that of the initi~tl state. One possibility is that
the semitons in Equation 130 evolve into u l~.; chirality-violating processes
like that in Equation 128 are allowed if the fermions have masses.

The evolution of semitons into "final-state" quarks and leptons is not yet
understood in quantitative detail. But it is reasonable to expect that the
semiton intermediate state can evolve with a probability of order one into a
final state with a baryon number different from the initial state (89-91). It 
also expected that adding more generations of fermions will have no
qualitative effect on the baryon-number-changing processes. The main new
feature in the many-generation case is that the boundary conditions and
hence the scattering amplitudes depend on generalized Cabibbo-like mix-
ing angles (92).

’The above considerations strongly suggest that the baryon-number-
changing cross section for a quark of energy E scattering from a monopole
is of order E-z, if E- ~ is much greater than the radius of the monopole core,
and much less than both the Compton wavelength of the quark and the size
of a hadron. But we are really interested in the cross section for nucleon
decay catalyzed by the monopole. There are actually two questions of
experimental interest. One is, what is the cross section for capture of nuclei
by the monopole? It is probably large (93), and the capture rate might
conceivably control the catalysis rate in terrestrial experiments. The other
is, what is the cross section for the catalysis process itself? in spite of some
ambitious attempts (94), techniques do not yet exist for doing detailed
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quantitative calculations of the catalysis cross section. The best guess is that
it is roughly geometrical, a//-,~ 10-27 cm2, and that the most likely final
state is a positron accompanied by a pion.

8. MONOPOLES IN COSMOLOGY AND

ASTROPHYSICS

8.1 Monopoles in the Very Early Universe

We have seen that the existence of magnetic monopoles is a very general
consequence of the unification of the fundamental interactions. But to say
that monopoles must exist in grand unified theories is not necessarily to say
that we have a reasonable chance of observing one. If the monopole mass is
really as large as 10t 6 GeV, then there is no hope of producing monopoles in
accelerator experiments in the foreseeable future.

However, it is likely that the universe was once extremely hot, so hot that
processes occurred that were sufficiently energetic to produce monopoles. If
there are any monopoles around today, they are presumably relics of the
very brief, very energetic epoch immediately following the "big bang." So it
is evidently interesting to consider how many rnonopoles might have been
produced in the very early universe (8, 9).

As the universe cooled, it is expected to have undergone a phase
transition at a critical temperature T~ of order the unification mass scale
Mx. When the temperature T was above To, the full, grand unified gauge
symmetry was restored (95); the scalar field q~, which acts as an order
parameter for the breakdown of the gauge symmetry, had a vanishing
expectation value. But monopoles can exist only when the gauge symmetry
is spontaneously broken, so no monopoles were present when T was above
To. When T fell below To, the expectation value of q) turned on, and
monopole production became possible.

Because monopoles, unlike the other superheavy particles in grand
unified theories, are stable, the density of monopoles per comoving volume
established in the phase transition at T of order T~ could subsequently be
reduced only by annihilation of monopole-antimonopole pairs. As the
universe rapidly expanded, monopoles and antimonopoles had an increas-
ingly more difficult time finding each other, and an appreciable density of
monopoles per comoving volume might have persisted.

Thus, the problem of estimating the monopole abundance may be separ-
ated into two parts. We must estimate the initial density of monopoles
established during the phase transition, and we must determine to what
extent the monopole density was subsequently reduced by pair annihilation.

Let us first consider the production of monopoles during the phase
transition. The detailed mechanism by which monopoles were produced
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depends on the nature of the phase transition ; in particular, on whether it
was a second-order (or weakly first-order) transition, in which large
fluctuations occurred, or a strongly first-.order transition, in which
supercooling occurred. In either case, there is no reason to believe that the
monopole abundance was ever in thermal equilibrium,

In the case of a second-order (or weakly first-order) phase transition, the
scalarfield ̄  underwent large random fluctuations when T was near T~. As
the universe expanded and cooled, the scalar field was rapidly quenched,
and a large density of topological defects became frozen in; these defects
are the monopoles and antimonopoles. The quenching process may be
described in the following way (7): At the time when the monopoles are
being produced, the scalar field q~ is uncorrelated over distances larger than
some characteristic correlation length 4. We may thus regard ̄  as having a
domain structure, with ff the characteristic size of a domain. At the
intersection point of several domains, each with a randomly oriented scalar
field, there is some probability p that the scalar field orientation is
topologically nontrivial ; if so, a monopole or antimonopole must form at
the intersection point. The probability p depends on the detailed structure
of the monopole, but it is not very much less than one. According to this
picture, the density of monopoles n established in the r~hase transition is

(/’/)initial "~ P~ - 3. 131.

This argument sounds suspicious, because it relies on the notion of a
scalar field domain structure, even though :it is always possible to make a
uniform scalar field look wiggly by performing a gauge transformation.
However, there is no fundamental difficulty. We can fix the gauge in an
appropriate way so that the idea of a scalar field domain makes sense, and
we have reached a conclusion about the density of topological defects,
which is a gauge-invariant quantity.

In a second-order (or weakly first.order) phase transition, the correlation
length ~ becomes large as T approaches T¢, but in the early universe
causality places a limit on. how much ~ can grow (96). The scalar field 
must remain uncorrelated over distances exceeding the horizon length dn,
the largest distance any signal could have traveled since the initial
singularity ; thus ~ < d.. In terms of the temperature T, da may be written
as (97)

~ < dn ~ Cm~,/T~, 132.

where mp -,~ 1019 GeV is the Planck mass, which determines the expansion
rate of the universe, and C = (0,60)N ~/2, where N istheeffective number of
massless spin degrees of freedom in thermal equilibrium at temperature T.
(In a minimal grand unified theory, C ~ 1/20.) Combining Equations 131
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and 132, we conclude that the initial value of the dimensionless ratio nit 3 is
bounded by

(n/Ta)i,~itial >>, p( Tc/Cm,)3. 133.

In a typical grand unified theory, with To ~ 1015 GeV, Cm~, ,.~ 1018 GeV,
and p ~ 1/I0, we obtain (n/Ta)i~itla~ >~ i0-10

In the case of a strongly first-order phase transition, supercooling occurs.
The phase with unbroken grand unified gauge symmetry becomes thermo-
dynamically unstable when T < To, but nonetheless persists for a while,
until bubbles of the stable broken-symmetry phase eventually begin to
nUcleate. These bubbles expand, collide, and coalesce, filling the universe
with the stable phase (98). Inside each bubble, the scalar field ¯ is quite
homogeneous, so that each bubble contains a negligible number of mono-
poles. But when the expanding bubbles collide, monopoles can be produced.

Although it is not easy to calculate in detail the initial density of
monopoles produced by bubble collisions, we can obtain a lower bound on
the monopole density by invoking an argument similar to the one applied
above to the case of a second-order transition. Now each bubble can be
regarded as a scalar field domain, and the density of monopoles produced
by the collisions must exceed the probability factor p times the density of
bubbles at the time they collide. Since bubbles cannot expand faster than
the speed of light, each bubble must be smaller in radius than the horizon
site dn, and the density of bubbles must be greater than dff 3. We again
conclude, therefore, that n > pd~i 3, and the bound in Equation 133 still
applies, except that To is replaced by a temperature at which bubble
nucleation becomes probable.

Regardless of the nature of the phase transition, reasonably copious
production of monopoles seems to be inevitable. Moreover, the monopole
abundance cannot be significantly reduced by pair annihilation (8, 9, 99).
The annihilation rate is determined by the monopole-antimonopole
capture rate; once a bound pair forms, it quickly cascades down emit-
ting many photons and gluons, and finally annihilates into a burst of
superheavy scalar particles and X-bosons. But the capture process is
relatively inefficient because the monopoles are so heavy; it fails to keep
pace with the expansion of the universe if the monopole abundance n is ¯
smaller than (9)

(niT 3) ,’~ 10-9(m/1016 GeV), 134.

where m is the mass of the monopole. (The quantity niT3 is convenient to
consider, because it remains constant if the expansion of the universe is
adiabatic, and no monopoles are created or destroyed.) Once the mono-
pole abundance is comparable to Equation 134 or smaller, monopole-
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antimonopole annihilation cannot further reduce the monopole density per
comoving volume.

Using the standard estimate m ~ 1026 GeV, we see that, if the smallest
pos..sible initial monopole abundance consistent with the bound (Equation
133), (nit 3) ,~ 10- lo, is established in the phase transition, this abundance
is not further reduced by annihilation at all. The only way to reduce n/Ta

further is through nonadiabatic effects that increase the entropy density,
but such effects cannot dilute the monopole abundance by many orders of
magnitude without at the same time diluting the baryon-number density of
the universe. Neglecting generation of entropy, we conclude that the density
of magnetic monopoles today is n ,,, 10-10 T,3, which is comparable to the
density of baryons. This conclusion is clearly absurd, if the mass of a
monopole exceeds the mass of a baryon by it factor of order 10~6.

We have uncovered the "monopole problem," an apparently serious
conflict between grand unified theories and standard big-bang cosmology.
Various attempts have been made to resolve this conflict. By far the most
appealing resolution of the monopole problem is offered by the inflationary
universe scenario (10-12, 139).

In this scenario, a positive effective cosmological constant causes the
universe to "inflate" exponentially as a function of time, after the ap-
pearance of bubbles or fluctuation regions in which the scalar field * is
nonzero. Some monopoles are produced when bubbles or fluctuation
regions first form, but they are subsequently "inflated away" ; in the course
of the exponential expansion, the monopole abundance is reduced to a
negligible value. Eventually, after many e-foldings of expansion, the
cosmological constant that drove the inflation is rapidly converted to
radiation, and the Universe "reheats." Its subsequent evolution is well
described by the standard cosmological model.

The inflationary universe scenario is more appealing than other possible
solutions to the cosmological monopole problem (22, 23, 25) because
inflation solves other cosmological problems as well. It explains why the
universe is nearly homogeneous and isotropic, and why the mass density of
the universe today is close to the critical density required to cause it to
recollapse (10). It may also explain the origin of the primordial density
fluctuations that led to galaxy formation (100). As presently formulated, the
inflationary-scenario is not free of flaws, but it seems likely to be essentially
correct. So it is plausible that inflation is the mechanism by which the
cosmological abundance of monopoles became suppressed.

Not only can inflation reduce the monopole abundance to an acceptably
small level, it can easily reduce the abundance to so low a level that a
monopole will never be seen (23, 101, 102). Fortunately, this last state-
ment is not a firm prediction. Monopoles :may be produced either during
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inflation (103) or during (104) and after (23, 101, 102) the reheating 
universe. Until the details of the scenario are better known, it will not be
possible to predict accurately the monopole abundance within the context
of the inflationary universe scenario.

One suggestion for suppressing the monopole abundance within the
context of the standard cosmological scenario is worthy of mention. It is
possible that the universe entered a superconducting phase as it cooled
(105). A superconductor tries to expel magnetic flux, so monopole-
antimonopole pairs would have become connected by flux tubes and
annihilated rapidly (106). As tlie universe cooled further, it might have
eventually returned to a normal nonsuperconducting phase, but only after
the monopole abundance had been significantly reduced.

An interesting feature of this superconductor scenario is that a poten-
tially interesting number of monopoles could have survived until the
universe re-entered the normal phase. Although the positions of monopoles
and antimonopoles are strongly correlated when monopoles are first
produced, the flux tubes do not pair up monopoles and antimonopoles
perfectly. Some monopoles, unable to decide which antimonopole to pair
up with, may get left behind. It thus seems possible that the superconductor
scenario predicts a detectable abundance of monopoles (107).

The monopole problem has exerted a healthy influence on the develop-
ment of cosmology during the past few years. And if the monopole
abundance is ever measured, it will severely constrain our speculations
about the very early universe. But, for now, cosmology does not offer much
guidance to the prospective monopole hunter; there is no definite
cosmological prediction for the monopole abundance.

8.2 Astrophysical Constraints on the Monopole Flux

Although cosmological considerations provide no definite prediction for
the monopole abundance, both the inflationary scenario and the super-
conductor scenario offer the possibility that the monopole abundance is
both small enough to be acceptable and large enough to be detectable.
Theoretical cosmology should not discourage an experimenter from
looking for monopoles.

People have been looking for magnetic monopoles for a long time. But
traditional monopole searches do not place significant constraints on
superheavy monopoles with mass m of order 1016 GeV. The traditional
searches have relied on the strong ionization power of a relativistic
monopole (108, 109), or have sought monopoles trapped in the Earth’s crust
(110, 111). But a superheavy monopole would be expected to be slowly
moving and very penetrating; it need not ionize heavily or stop in the earth
(9, 112, 113).
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How slowly moving7 The monopole can be accelerated by either
gravitational fields or magnetic fields; which effect is more important
depends on the mass of the monopole. From gravitational fields alone, the
monopole would acquire a typical galactic infall velocity of order 10-3c,
regardless of its mass. To determine the effect of the magnetic field in our
galaxy, recall that the field has a strength B of order 3 x 10-6 gauss and a
coherence length L of order 1021 cm (114). A monopole with the Dirac
charge 9D crossing one coherence length is accelerated to

(2gp~BL)1/z
( 10w GeV)1/zv = -- ,,~ 10-3c : ~ - . 135.

This magnetic acceleration is therefore more important than the gravi-
tational acceleration for m ~ l0w GeV. The monopole does not attain a
relativistic velocity for m > 10~ GeV.
- How penetrating? The stopping power of slowly moving magnetic

monopoles remains a rather controversial subject, about which a little more
is said in Section 9. But the energy loss in rock of a monopole with
v/c ~ 10-2 surely does not much exceed (115)

~ 100(~ GeV cm-~. 136.
dx

Thus, the range in ~ock of a monopole with m ~ 1016 GeV is larger than
101 1 cm; the monopole passes through the Earth without slowing down.

Although superheavy monopoles are not easily stopped or detected,
astrophysical arguments can be used to place severe limits on the flux of
magnetic monopoles in cosmic rays. These limits offer valuable guidance to
the prospective monopole hunter.

One stringent limit [the "Parker limit" (13)-I on the monopole flux 
obtained by noting that, because the magnetic field of our galaxy ac-
celerates monopoles, the energy density U = B~/8n stored in the field is
dissipated at the rate dU/dt ~ (ynv- B), where n is the monopole density.
By demanding that the field energy is not substantially depleted in a time z,
of order 10s years, required to regenerate the field, we obtain the bound

nv< B i0_~6 cm_2 s_~ sr_~ ( ~ 3(108 3F=4n ~32n~g~ 3 x 10-6G]~ z ]. 137.

A nice feature of this flux limit is that it appears to be independent of the
mass m of the monopole.

However, it is implicitly assumed in the derivation of Equation 137 that
gravitational effects on the trajectory of the monopole are negligible, and
we have already argued that. this is not so for m ~ 10~ GeV. Ifa monopole
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enters a coherent domain of the galactic magnetic field with incident energy
½my2 > ~IBL, then the energy AE it extracts from the domain is a second-
order effect, due to the deflection of the monopole trajectory as it crosses the
domain; on the average it is

AE ,.~ (gBL)2/½mv2. 138.

Therefore, the rate of dissipation of magnetic field energy scales like 1/m for
m ~> 1017 GeV, and the flux limit becomes (14)

F ~< 10-16 cm-2 s-1 sr-l(m/1017 GeV), m >~ 101~ GeV. 139.

For m >~ 1020 GeV, a more stringent limit than Equation 139 can be
obtained, which is based solely on the enormous mass of the monopole and
has nothing to do with its magnetic charge (9, 14, 112, 113). The total
number ofmonopoles in our galaxy must not exceed the mass of the galaxy.
By demanding that the mass of a spherical monopole galactic halo with
radius of order 30 Kpc not exceed 1012 solar masses, and taking the typical
monopole velocity to be of order 10-3c, we obtain the flux limit (14)

F ~< 10-13 cm-2 s-1 sr-l(1020 GeV/m). 140.

Since this limit on the flux crosses the one in Equation 139 for m ,-, 1020
GeV, we have also the mass-independent bound

F ~ 10 -13 cm-2 S-1 sr-1. ~" 141.

(See Figure 8.)
While monopoles are undoubtedly rare, they may play an important role

in the dynamics of galaxies. The above reasoning does not exclude the
possibility that monopoles make up the dark matter of galactic halos, for

~Et O

i,

Galactic

I , I I I I I I I I
I0~4 tOm i0la i0zo i0zz

Monopole Moss (GeV)

Figure 8 Astrophysical limits on the monopole flux as a function of monopole mass.
"Galactic B field" labels the limit based on the energetics of the galactic magnetic field.
"Galactic mass" labels the limit based on the total mass of the galaxy.
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m >~ 1020 GeV. A monopole mass much larger than 1020 GeV seems
unlikely, but a mass of order 1020 GeV is not that implausible; this is the
typical sort of monopole mass expected in a Kaluza-Klein theory. And a
monopole flux close to the limit in Equation 141 ought to be detectable; it
corresponds to about one event per year in a few me of detector.

The derivation of the Parker limit, Equation 139, is subject to one
potentially serious criticism--the feedback of the accelerated monopoles
on the galactic magnetic field has been ignored. If the monopole abundance
were sufficiently large, then the period of magnetic plasma oscillations
would be less than the time required for a monopole to cross a coherent
domain of the magnetic field. The galactic magnetic field might then drive
weakly damped plasma oscillations, rath~er than irreversible magnetic
currents, and the Parker limit might be evaded by a significant margin if
coherent oscillations could be maintained over many cycles (14, 116, 117). 
seems likely, however, that small-scale gravitational and magnetic in-
homogeneities, which are inevitably present, would destroy coherence and
damp such oscillations rapidly.

In the hope of evading the Parker limit, it has also been su.ggested that the
local flux of magnetic monopoles in the solar system greatly exceeds the
ambient flux in the galaxy (118). This suggestion seems implausible 
purely kinematic grounds (1.19).

Even more pgwerful limits on the monopole flux can be obtained by
considering the astrophysical implications of the catalysis by monopoles of
nucleon decay. The most interesting implication concerns the effects of
monopoles in neutron stars (120, 121). A monopole striking a neutron star
gets captured inside the star, ifm ~< 10zz GeV. Then, surrounded by matter
at nuclear density, it catalyzes nucleon decay at a furious rate. A modest
number ofmonopoles in a neutron star would cause the star to heat up, and
emit a substantial flux of ultraviolet or x-ray photons. From observational
limits on the ultraviolet and x-ray luminosity of old pulsars, it is therefore
possible to derive a bound on the monopole flux F; conservatively, this
bound is (120-122)

F ~< 10-22 cm-2 s-x St- ~(o’fl/10 -27 cm:")-~, 142.

where a is the cross section for catalysis of nucleon decay by a monopole,
and/~ ~ 0.3 is the relative velocity of the nucleon and monopole.

We infer that, if catalysis really proceeds at a strong-interaction rate, then
the monopole flux must be smaller than Parker’s limit (Equation 137) by 
least six orders of magnitude. Monopoles must be so rare that there is little
hope of observing one directly. The best way to find evidence for their
existence would be by observing their effect on the luminosity distribution
of neutron stars.
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Of course, the limit (Equation 142) is nullified if monopoles do not
catalyze nucleon decay, or do so at an insignificant rate. We expect the
catalysis phenomenon to occur only if the new interactions associated with
the monopole core fail to conserve baryon number, and it is surely possible
to construct models for which this is not the case. An example is the SO(10)
model of Section 5.3. The light monopoles associated with the H1 ~ H2
breakdown in that model do not catalyze nucleon decay (59), although the
heavy monopoles do, and it is easy to imagine a cosmological scenario in
which these light monopoles are much more abundant than the heavy
monopoles. (Note that, as is typical of monopoles that do not catalyze
nucleon decay, the light monopoles carry twice’ the Dirac charge.) For
monopoles that do not catalyze nucleon decay, the best flux limits we have
are Equations 137, 139, and 140.

Still, for the experimenter who dreams of catching a monopole in the act
of catalyzing nucleon decay, the bound in Equation 142 is very d]scou{ag-
ing. An even more stringent limit can be obtained if capture of monopoles
by the main sequence progenitor of the neutron star is taken into account
(122). This stronger limit is more mass sensitive, however; Planck-mass
monopoles, for example, would rarely be captured by main sequence stars.

Once captured by a neutron star, a monopole must be accelerated to a
velocity of order c to escape. In the hope of evading the bound (Equation
142), it is worthwhile to consider whether there is any possible mechanism
by which monopoles can be efficiently ejected from neutron stars at
relativistic velocities (123).

It is generally believed that the core of a neutron star is a type II
superconductor in which Cooper pairs of protons have condensed (124).
Because the superconducting core expels magnetic flux, monopoles
entering the star will eventually come to rest on the surface of the core.
Typically, many magnetic flux tubes will have been trapped in the core
when it went superconducting, and a monopole floating on the surface of
the core will occasionally encounter the opening of a tube and drop in,
penetrating the core (125).

It is conceivable that, deep within the core, there is an inner core in which
charged pions condense. This pion condensate is also a type II super-
conductor, but its flux tubes would carry considerably higher energy per
unit length than the flux tubes in the proton superconductor. Also, the flux
quantum in the pion condensate would be the Dirac magnetic charge
carried by the monopole, rather than half the Dirac charge as in the proton
supe{conductor. Thus, two flux tubes in the proton superconductor would
coalesce at the surface of the pion condensate, and a monopole drifting
down one of them would be rapidly accelerated upon entering the pion
condensate, the sizable magnetic field energy stored in the tube being

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. N

uc
l. 

Pa
rt

. S
ci

. 1
98

4.
34

:4
61

-5
30

. D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 B
ro

ok
ha

ve
n 

N
at

io
na

l L
ab

or
at

or
y 

on
 0

9/
14

/0
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.annualreviews.org/aronline


522 PRESKILL

Fi!Ture 9 Magnetic monopole in a flux tube near the boundary between a proton pair
condensate and a charged pion condensate. In the proton pair condensate (left), the magnetic
flux in the tube reverses direction at the monopole, and there is no magnetic force on the
monopole. In the pion condensate (right), the flux tube terminates on the monopole, and the
monopole accelerates rapidly.

efficiently converted to monopole kinetic energy (see Figure 9). The
monopole could be accelerated to a relativistic velocity, and ejected from
the star! Hence, if we take the fullest advantage of our ignorance concerning
the interiors of neutron stars, it is possible that the discouraging bound of
Equation 142 can be evaded (123).

Even if we throw out the neutron star arguments, it may still be possible .
to obtain a stringent bound on the monopole flux by considering the effect
of catalysis in white dwarfs; the interiors of white dwarfs are less exotic and
better understood than those of neutron stars. If it is assumed that all
monopoles that strike a white dwarf are captured, then, from observational
limits on the luminosities of white dwarfs, we obtain a bound on the
monopole flux (126) that is weaker by only about three orders of magnitude
than Equation 142. Sufficiently heavy mon~opoles (m ~> 1020 GeV) are not
captured by white dwarfs, but such heavy monopoles probably could not be
ejected from a neutron star either.

All in all, the uncertaintities in the astrophysical arguments are such that
it is barely possible to believe that there Jis an observable flux of mono-
poles that catalyze nucleon decay at a strong-interaction rate. Terrestrial
searches for such monopoles are not completely pointless.

9. DETECTION OF MONOPOLES

9.1 Induction Detectors

If there are magnetic monopoles in the universe, they are surely rare, and
they are probably slowly moving. Attempting to detect these monopoles is
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¯ a challenging and risky experimental enterprise. But the potential rewards
are so great that considerable risk is justified~

Possible techniques for detecting monopoles are briefly described here,
but no attempt is made to give a complete review of recent experiments.
More comprehensive reviews can be found in (127-129).

In principle, a closed loop of superconducting wire is an ideal monopole
detector, because it gives an unambiguous signal whenever a monopole
passes through the loop, however slowly (111, 130). To determine the effect
on the loop of a monopole passing through, we may use the integrated
Maxwell equation

~rE" dr dO dQ~
143.

dr dt ’

which has been suitably modified to take into account the magnetic
monopole current. Here ̄  is the magnetic flux through a surface Sr
bounded by the closed path F, and dQ~/dt is the monopole current through
the surface St. Applying Equation 143 to a path F entirely contained in the
superconducting wire, where E = 0, and integrating over time, we find that
the change A~ in the magnetic flux linking the loop and the total magnetic
charge AQm that passes through the loop are related by

A~ = -AQm. 144.

In particular, if a magnetic monopole with the Dirac charge #o passes
through the loop, the flux changes by two quantized flux units; the factor of
two arises because the electric charge of a Cooper pair is 2e.

The result (Equation 144) is actually obvious, because the magnetic field
cannot penetrate the superconducting wire. The magnetic field lines
emanating from the monopole are therefore swept back as the monopolc
approaches the wire, and break off, forming closed loops around the wire, as
indicated in Figure 10 (131). (The field lines are allowed to break and rejoin
where the magnetic field vanishes.)

We see that a monopole passing through the loop causes a sudden
change in the magnetic flux linking the loop, and a corresponding shift in
the dc current level in the wire, with a rise time of order the radius of the
loop divided by the velocity of the monopole. For a sufficiently small loop
(less than 10 cm in diameter), the shift can be easily detected by a SQUID
(superconducting quantum interference device) magnetometer, provided
that the loop is adequately shielded from other fluctuating magnetic
disturbances.

The sizes of superconducting loop detectors are currently limited by the
magnetic shielding requirement and by signal-to-noise problems, but
monopole searches have been conducted with such detectors, and an
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FigurelO Bending and breaking of magnetic field lines, as a monopole passes through a loop
of superconducting wire.

experimental flux limit (132) F ~< 2 x -11 cm-2 s- 1 sr -~ has been
obtained at the 90% confidence level. One: candidate event has been seen
(133), with a magnitude consistent with the Dirac magnetic charge. This
event is the basis of the statement in the first paragraph of the introduction.
Confirmation is still awaited.

The interpretation of this event as a magnetic monopole is not easily
reconciled with the theoretical flux limit:~ of Section 8.2. But no other
completely satisfactory interpretation has iyet been suggested.

9.2 Ionization Detectors

The superconducting induction detector laas the significant advantage of
being sensitive to monopoles of arbitrarily low velocity. But it will not be
easy to construct a detector based on these principles big enough to
challenge the theoretical flux limits of Section 8.2.

Larger detectors can be designed to detect the ionization loss of a
rnonopole passing through matter. A w~ry slowly moving (/3 ,,~ 10-3)
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particle with significant energy loss would be an unmistakable signal, but a
negative result of a search for such events is not so easy to interpret, because
the energy loss of slow monopoles is not that well understood.

The energy loss of a fast (electrically or magnetically) charged particle 
matter is easily calculated, because electron encounters may bc treated in
the impulse approximation. But the energy loss of a slow particle depends
on the details of atomic and molecular physics. One is inclined to say that
the response of an atom or molecule to a very slow (fl ~ 10- a) monopole
passing nearby is similar to its reponse to a magnetic field that adiabatically
turns on and off; therefore, it is unlikely to become’ excited. But this
conclusion is not necessarily correct, because the very strong magnetic field
of the monopole greatly distorts the energy levels of the atom or molecule. If
the ground state and an excited state closely approach each other, the
adiabatic approximation may fail badly. To decide whether this occurs,
detailed knowledge of the level structure in the inhomogeneous magnetic
field of the monopole is needed.

As an illustration, consider a problem simple enough to be amenable to a
sound theoretical analysis; the energy loss of a monopole in atomic
hydrogen (134). First, imagine that a very slow monopole is incident on the
nucleus of a hydrogen atom with zero impact parameter, and that the
nucleus is held fixed, so that atomic recoil is neglected. If the monopole
moves along the z-axis, then the z-component of angular momentum

J~ = [-r × (p--eA)+½a-½~]z 145.

is conserved (84); here r is the electron coordinate relative to the nucleus
and ~ is the unit vector pointing from the monopole to the electron. When
the monopole is very distant from the atom, the electron Hamiltonian and
angular momentum reduce to those, of a simple hydrogen atom. But,
because the last term in Equation 145 changes sign as the monopole moves
from the far left (r~z = - 1) to the far right (~z = + 1), we see that the passage
of the monopole causes one unit of J~ to be transferred to the electron.

The low-lying levels of the hydrogen atom are sketched in Figure 11 as a
function of the separation z between the nucleus and monopole. When I zl is
large compared to the Bohr radius ao, the levels approach those of an
unperturbed hydrogen atom; the ground state is a degenerate 1S doublet
with m = +__½, if we neglect the hyperfine splitting. Since the passage of the
monopole increases rn by 1, the m = ½ member of the 1S doublet must
evolve into the m = ~ member of the 2P multiplet. If the m = ___½ ground-
state levels are occupied with equal probabilities, then there is a 50% chance
that the passage of the monopole will excite the hydrogen atom.

When the positions of the nucleus and monopole coincide (z = 0), all
three components of J are again conserved, and the energy levels can be
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computed exactly (78, 135); the ground state is an angular momentum
singlet, and the first excited state is an angular momentum triplet. Thus, at
z - 0, the levels with Jz -- -1, 0, 1 cross. But if the impact parameter of
the incident monopole is nonzero, Jz is not conserved and a level cross-
ing cannot occur. Therefore, in the adiabatic limit, excitation of the atom
occurs only for zero impact parameter.

However, if a monopole with impact parameter b moves at velocity v,
excitation is likely to occur as long as the levels approach within hco of one
another, where co ~< v/b. Calculation indicates that the hydrogen energy
levels approach within a few tenths of an electron volt of one another even if
b is of order ao 034). The excitation cross section is therefore surprisingly
large ; the calculated energy loss per unit density in hydrogen is (134)

dE
dx 37(~/10-4)MeV cm~ g- 1,

146.

if atomic recoil is neglected. When atomic recoil is included, there is a
kinematic threshold for excitation at/~ = 1..5 x 10-4.

This calculation illustrates that a reasonably large energy loss is possible
for/~ as small as 10-4, but also that a detailed understanding of the atomic
levels in the presence of the monopole is necessary before a quantitative
calculation of the energy loss can be performed. Nonetheless, a similar
qualitative picture is probably applicable to more complicated materials.
For example, a monopole incident on a Z-electron atom with zero impact

~ I I~n - -~ m---~
n=~>

-6

~.._____....----- n = I
-14 -

m=-~ m~

-I0 -5 o 5 IO

z/oo

Figure ~ ~ Electronic energy levels of a hydrogen atom in the vicinity of a Dime monopo]e.
The position of the monopole, relative to the atomic nucleus, is (0, O, z).
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parameter will transfer Z units of angular momentum to the atom, and it
seems likely that level crossings will be induced like those that occur in the
hydrogen atom. The excited many-electron atom should then be able to
autoionize, unlike the excited hydrogen atom, which is in a 2P state and
must decay radiatively.

Other calculational schemes have also indicated that monopoles with fl
down to 10-4 have a detectable ionization loss in many materials (115). It 
thus probable that existing ionization detectors are capable of detecting
monopoles with fl ~ 10-4, and in any case we can be quite confident that
monopoles with fl ~ 10-3 are detectable.

Since it is unreasonable to expect most of the cosmic ray monopoles
incident on the Earth to have velocities much below 10- 3c (escape velocity
from the galaxy is of order 10-3c), ionization detector experiments should
be able to place useful limits on the cosmic ray monopole flux. The best
current limit is F ~< 7 × 10-13 cm-2 s-1 sr-1 (136). It seems to 
technically feasible to build much larger detectors that can improve this
limit by several orders of magnitude.

9.3 Catalysis Detectors

Astrophysical arguments place very discouraging constraints on the flux in
cosmic rays of magnetic monopoles that catalyze nucleon decay at a strong-
interaction rate. It is nonetheless worthwhile to conduct experimental
searches for such monopoles.

For one thing, as discussed in Section 8.2, the astrophysical arguments
could be wrong. It is also conceivable that catalysis occurs at a rate small
enough to be unimportant in neutron stars, but still large enough to be
detectable in terrestrial experiments. The point is that the monopole may
have a reasonably large cross section for capturing a nucleon; after capture
it will hold onto the nucleon until it is able to catalyze its decay. Even if
the nucleon must wait 10-6 s after capture before finally decaying, the
monopole, traveling at 10-3 c, will have moved less than a meter. The
catalysis would be no harder to observe than if it had followed 10- 23 s after
capture, as long as the detector is more than a meter long (137).

Experiments designed to search for spontaneous nucleon decay are also
well suited to detect nucleon decay catalyzed by a monopole. If catalysis (or
capture) occurs with a typical strong-interaction cross section, then several
nucleon decay events will occur in the detector along the trajectory of the
monopole. This distinctive signature allows catalyzed nucleon decay to be
distinguished from spontaneous decay. Unsuccessful searches for such
multiple nucleon decay events have placed the limit F ~< 7 x 10-15 cm-2

s- 1 sr- 1 on the monopole flux, assuming a catalysis cross section tr greater
than 10-26 cm2 (138).
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The magnetic monopole continues to be strangely elusive. But just as
theorists have continued to explore the wonders of the monopole with
undeterred enthusiasm in spite of its elusiveness, so experimenters will
continue to stalk the monopole with unfailing determination and ingenuity.
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